Aggregator
Creative Aging: Unraveling the Psychosocial Benefits of Art Among Germany's Oldest Old. Findings From the Nationally Representative Study "Old Age in Germany (D80+)"
CONCLUSIONS: About one in four individuals aged 80 years and over in Germany is engaged in artistic activities (frequently; mostly at home). Our findings show that engaging in artistic activities may have positive psychosocial benefits (depending on the type and sex-specific), particularly in reducing loneliness and increasing life satisfaction. Artistic engagement, particularly outside the home, may contribute to increased life satisfaction among women. Even rare artistic activities could prove...
Weakened Airway Epithelial Junctions and Enhanced Neutrophil Elastase Release Contribute to Age-Dependent Bacteremia Risk Following Pneumococcal Pneumonia
Streptococcus pneumoniae (Sp; pneumococcus), the most common agent of community-acquired pneumonia, can spread systemically, particularly in the elderly, highlighting the need for adjunctive therapies. The airway epithelial barrier defends against bacteremia and is dependent upon apical junctional complex (AJC) proteins such as E-cadherin. After mouse lung challenge, pneumolysin (PLY), a key Sp virulence factor, stimulates epithelial secretion of an inflammatory eicosanoid, triggering the...
Tau association with synaptic mitochondria coincides with energetic dysfunction and excitatory synapse loss in the P301S tauopathy mouse model
Neurodegenerative Tauopathies are a part of several neurological disorders and aging-related diseases including, but not limited to, Alzheimer's Disease, Frontotemporal Dementia with Parkinsonism, and Chronic Traumatic Encephalopathy. The major hallmarks present in these conditions include Tau pathology (composed of hyperphosphorylated Tau tangles) and synaptic loss. in vivo studies linking Tau pathology and mitochondrial alterations at the synapse, an avenue that could lead to synaptic loss,...
Electrostatic in-plane structural superlubric actuator
Micro actuators are widely used in NEMS/MEMS for control and sensing. However, most are designed with suspended beams anchored at fixed points, causing two main issues: restricted actuated stroke and movement modes, and reduced lifespan due to fatigue from repeated beam deformation, contact wear and stiction. Here, we develop an electrostatic in-plane actuator leveraging structural superlubric sliding interfaces, characterized by zero wear, ultralow friction, and no fixed anchor. The actuator...
Stereo-seq of the prefrontal cortex in aging and Alzheimer's disease
Aging increases the risk for Alzheimer's disease (AD), driving pathological changes like amyloid-β (Aβ) buildup, inflammation, and oxidative stress, especially in the prefrontal cortex (PFC). We present the first subcellular-resolution spatial transcriptome atlas of the human prefrontal cortex (PFC), generated with Stereo-seq from six male AD cases at varying neuropathological stages and six age-matched male controls. Our analyses revealed distinct transcriptional alterations across PFC layers,...
Long-term intake of Tamogi-take mushroom (Pleurotus cornucopiae) mitigates age-related cardiovascular dysfunction and extends healthy life expectancy
Age-related declines in cardiac function and exercise tolerance interfere with healthy living and decrease healthy life expectancy in older individuals. Tamogi-take mushrooms (Pleurotus cornucopiae) are known to contain high levels of Ergothioneine (EGT), an antioxidant with potential health benefits. In this study, we assessed the possibility that long-term consumption of Tamogi-take mushrooms might attenuate age-related decline in cardiac and vascular endothelial function in mice. We found...
A lifespan-generalizable skull-stripping model for magnetic resonance images that leverages prior knowledge from brain atlases
In magnetic resonance imaging of the brain, an imaging-preprocessing step removes the skull and other non-brain tissue from the images. But methods for such a skull-stripping process often struggle with large data heterogeneity across medical sites and with dynamic changes in tissue contrast across lifespans. Here we report a skull-stripping model for magnetic resonance images that generalizes across lifespans by leveraging personalized priors from brain atlases. The model consists of a brain...
Modulating mTOR-dependent astrocyte substate transitions to alleviate neurodegeneration
Traditional approaches to studying astrocyte heterogeneity have mostly focused on analyzing static properties, failing to identify whether subtypes represent intermediate or final states of reactive astrocytes. Here we show that previously proposed neuroprotective and neurotoxic astrocytes are transitional states rather than distinct subtypes, as revealed through time-series multiomic sequencing. Neuroprotective astrocytes are an intermediate state of the transition from a nonreactive to a...
Chromosome mis-segregation triggers cell cycle arrest through a mechanosensitive nuclear envelope checkpoint
Errors during cell division lead to aneuploidy, which is associated with genomic instability and cell transformation. In response to aneuploidy, cells activate the tumour suppressor p53 to elicit a surveillance mechanism that halts proliferation and promotes senescence. The molecular sensors that trigger this checkpoint are unclear. Here, using a tunable system of chromosome mis-segregation, we show that mitotic errors trigger nuclear deformation, nuclear softening, and lamin and heterochromatin...
A park-based group mobility program for older adults with difficulty walking outdoors: a qualitative process evaluation of the Getting Older Adults Outdoors (GO-OUT) randomized controlled trial
CONCLUSIONS: Community programs that incorporate structure, accountability, and opportunities for social interaction, can help improve motivation to increase outdoor walking activity and a sense of belonging for older adults with difficulty walking outdoors. Park-based OWG programs appear to convey additional important benefits related to improved physical function and well-being.
G6PD deficiency triggers dopamine loss and the initiation of Parkinson's disease pathogenesis
Loss of dopaminergic neurons in Parkinson's disease (PD) is preceded by loss of synaptic dopamine (DA) and accumulation of proteinaceous aggregates. Linking these deficits is critical to restoring DA signaling in PD. Using murine and human pluripotent stem cell (hPSC) models of PD coupled with human postmortem tissue, we show that accumulation of α-syn micro-aggregates impairs metabolic flux through the pentose phosphate pathway (PPP). This leads to decreased nicotinamide adenine dinucleotide...
Repetitive injury induces phenotypes associated with Alzheimer's disease by reactivating HSV-1 in a human brain tissue model
Infection with herpes simplex virus type 1 (HSV-1) in the brains of APOE4 carriers increases the risk of Alzheimer's disease (AD). We previously found that latent HSV-1 in a three-dimensional in vitro model of APOE4-heterozygous human brain tissue was reactivated in response to neuroinflammation caused by exposure to other pathogens. Because traumatic brain injury also causes neuroinflammation, we surmised that brain injury might similarly reactivate latent HSV-1. Here, we examined the effects...
PLK2 disrupts autophagic flux to promote SNCA/α-synuclein pathology
The aggregation and transmission of SNCA/α-synuclein (synuclein, alpha) is a hallmark pathology of Parkinson disease (PD). PLK2 (polo like kinase 2) is an evolutionarily conserved serine/threonine kinase that is more abundant in the brains of all family members, is highly expressed in PD, and is linked to SNCA deposition. However, in addition to its role in phosphorylating SNCA, the role of PLK2 in PD and the mechanisms involved in triggering neurodegeneration remain unclear. Here, we found that...
Intracerebroventricular anaerobic dopamine in Parkinson's disease with L-dopa-related complications: a phase 1/2 randomized-controlled trial
Continuous compensation for cerebral dopamine deficiency represents an ideal treatment for Parkinson's disease. Dopamine does not cross the digestive and blood-brain barriers and is rapidly oxidized. The new concept is the intracerebroventricular administration of anaerobic dopamine (A-dopamine) using an abdominal pump connected to a subcutaneous catheter implanted in the third ventricle, near the striatum. An open-label phase 1 study showed no serious adverse reactions induced by A-dopamine in...
Methylome analysis in long-lived men deciphers DNA methylation modifications associated with male longevity in humans
Men, despite having a lower likelihood of longevity compared to women, generally exhibit better health status when they achieve longevity. The role of DNA methylation in this paradox remains unclear. We performed whole-genome bisulfite sequencing on long-lived men (LLMs), long-lived women (LLWs), younger men (YMs) and younger women (YWs) to explore specific methylation characteristics in LLMs. Despite an accelerated methylation aging rate in LLMs compared to LLWs, we identify thousands of...
Individualized temporal patterns drive human sleep spindle timing
Sleep spindles are cortical electrical oscillations considered critical for memory consolidation and sleep stability. The timing and pattern of sleep spindles are likely to be important in driving synaptic plasticity during sleep as well as preventing disruption of sleep by sensory and internal stimuli. However, the relative importance of factors such as sleep depth, cortical up/down-state, and temporal clustering in governing sleep spindle dynamics remains poorly understood. Here, we analyze...
The cGAS-STING, p38 MAPK, and p53 pathways link genome instability to accelerated cellular senescence in ATM-deficient murine lung fibroblasts
Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association...
Neural evidence of functional compensation for fluid intelligence in healthy ageing
Functional compensation is a common notion in the neuroscience of healthy ageing, whereby older adults are proposed to recruit additional brain activity to compensate for reduced cognitive function. However, whether this additional brain activity in older participants actually helps their cognitive performance remains debated. We examined brain activity and cognitive performance in a human lifespan sample (N = 223) while they performed a problem-solving task (based on Cattell's test of fluid...
Relationship between leisure activity and depression in Chinese older adults: chain mediating effect of diet and cognition
CONCLUSIONS: Leisure activities are linked to depression, with diet and cognition acting as chain-mediating factors. Public health experts recommend that older adults engage in leisure activities, ensure a broad spectrum of dietary intake, and prioritize the augmentation of plant-based diets as preventative strategies against depression.
Partial rejuvenation of the spermatogonial stem cell niche after gender-affirming hormone therapy in trans women
Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the...