Skip to main content

Alzheimer & Parkinson

Bridging brain insulin resistance to Alzheimer's pathogenesis

1 day 3 hours ago
Emerging evidence links type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), with brain insulin resistance (BIR) as a key factor. In a recent study, Lanzillotta et al. reveal that reduced biliverdin reductase-A (BVR-A) impairs glycogen synthase kinase 3β (GSK3β) phosphorylation, causing mitochondrial dysfunction and exacerbating brain insulin resistance in the progression of both T2DM and AD.
Wenqiang Chen

The role of PINK1-Parkin in mitochondrial quality control

1 day 3 hours ago
Mitophagy mediated by the recessive Parkinson's disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially...
Derek P Narendra

LRRK2 regulates production of reactive oxygen species in cell and animal models of Parkinson's disease

1 day 3 hours ago
Oxidative stress has long been implicated in Parkinson's disease (PD) pathogenesis, although the sources and regulation of reactive oxygen species (ROS) production are poorly defined. Pathogenic mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are associated with increased kinase activity and a greater risk of PD. The substrates and downstream consequences of elevated LRRK2 kinase activity are still being elucidated, but overexpression of mutant LRRK2 has been associated with...
Matthew T Keeney

The genetic landscape of basal ganglia and implications for common brain disorders

2 days 3 hours ago
The basal ganglia are subcortical brain structures involved in motor control, cognition, and emotion regulation. We conducted univariate and multivariate genome-wide association analyses (GWAS) to explore the genetic architecture of basal ganglia volumes using brain scans obtained from 34,794 Europeans with replication in 4,808 white and generalization in 5,220 non-white Europeans. Our multivariate GWAS identified 72 genetic loci associated with basal ganglia volumes with a replication rate of...
Shahram Bahrami

Cryo-EM structure of Alzheimer's disease tau filaments with PET ligand MK-6240

2 days 3 hours ago
Positron Emission Tomography (PET) ligands have advanced Alzheimer's disease (AD) diagnosis and treatment. Using autoradiography and cryo-EM, we identify AD brain tissue with elevated tau burden, purify filaments, and determine the structure of second-generation high avidity PET ligand MK-6240 at 2.31 Å resolution, which bound at a 1:1 ratio within the cleft of tau paired-helical filament (PHF), engaging with glutamine 351, lysine 353, and isoleucine 360. This information elucidates the basis of...
Peter Kunach

Insulin-inspired hippocampal neuron-targeting technology for protein drug delivery

3 days 3 hours ago
Hippocampal neurons can be the first to be impaired with neurodegenerative disorders, including Alzheimer's disease (AD). Most drug candidates for causal therapy of AD cannot either enter the brain or accumulate around hippocampal neurons. Here, we genetically engineered insulin-fusion proteins, called hippocampal neuron-targeting (Ht) proteins, for targeting protein drugs to hippocampal neurons because insulin tends to accumulate in the neuronal cell layers of the hippocampus. In vitro...
Noriyasu Kamei

Neuro-evolutionary evidence for a universal fractal primate brain shape

3 days 3 hours ago
The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our results indicate that...
Yujiang Wang

Emerging signs of Alzheimer-like tau hyperphosphorylation and neuroinflammation in the brain post recovery from COVID-19

3 days 3 hours ago
Coronavirus disease 2019 (COVID-19) has been suggested to increase the risk of memory decline and Alzheimer's disease (AD), the main cause of dementia in the elderly. However, direct evidence about whether COVID-19 induces AD-like neuropathological changes in the brain, especially post recovery from acute infection, is still lacking. Here, using postmortem human brain samples, we found abnormal accumulation of hyperphosphorylated tau protein in the hippocampus and medial entorhinal cortex within...
Xuetao Qi

RAB12-LRRK2 complex suppresses primary ciliogenesis and regulates centrosome homeostasis in astrocytes

4 days 3 hours ago
The leucine-rich repeat kinase 2 (LRRK2) phosphorylates a subset of RAB GTPases, and their phosphorylation levels are elevated by Parkinson's disease (PD)-linked mutations of LRRK2. However, the precise function of the LRRK2-regulated RAB GTPase in the brain remains to be elucidated. Here, we identify RAB12 as a robust LRRK2 substrate in the mouse brain through phosphoproteomics profiling and solve the structure of RAB12-LRRK2 protein complex through Cryo-EM analysis. Mechanistically, RAB12...
Xingjian Li

Reassessing kinetin's effect on PINK1 and mitophagy

4 days 3 hours ago
Substantial evidence indicates that a decline in mitochondrial health contributes to the development of Parkinson disease. Accordingly, therapeutic stimulation of mitophagy, the autophagic turnover of dysfunctional mitochondria, is a promising approach to treat Parkinson disease. An attractive target in such a setting is PINK1, a protein kinase that initiates the mitophagy cascade. Previous reports suggest that PINK1 kinase activity can be enhanced by kinetin triphosphate (KTP), an enlarged ATP...
Zhong Yan Gan

Advances in Understanding Biomarkers and Treating Neurological Diseases -Role of the Cerebellar Dysfunction and Emerging Therapies

5 days 3 hours ago
Cerebellar dysfunction is increasingly recognized as a critical factor in various neurological diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Research has revealed distinct cerebellar atrophy patterns in conditions such as AD and multiple system atrophy, and studies in mice have highlighted its impact on motor control and cognitive functions. Emerging research into autism spectrum disorder (ASD) has identified key targets, such as...
Azhagu Madhavan Sivalingam

CSF proteomics identifies early changes in autosomal dominant Alzheimer's disease

6 days 3 hours ago
In this high-throughput proteomic study of autosomal dominant Alzheimer's disease (ADAD), we sought to identify early biomarkers in cerebrospinal fluid (CSF) for disease monitoring and treatment strategies. We examined CSF proteins in 286 mutation carriers (MCs) and 177 non-carriers (NCs). The developed multi-layer regression model distinguished proteins with different pseudo-trajectories between these groups. We validated our findings with independent ADAD as well as sporadic AD datasets and...
Yuanyuan Shen

A candidate loss-of-function variant in SGIP1 causes synaptic dysfunction and recessive parkinsonism

6 days 3 hours ago
Synaptic dysfunction is recognized as an early step in the pathophysiology of parkinsonism. Several genetic mutations affecting the integrity of synaptic proteins cause or increase the risk of developing disease. We have identified a candidate causative mutation in synaptic "SH3GL2 Interacting Protein 1" (SGIP1), linked to early-onset parkinsonism in a consanguineous Arab family. Additionally, affected siblings display intellectual, cognitive, and behavioral dysfunction. Metabolic network...
Marianna Decet

Genetics-driven risk predictions leveraging the Mendelian randomization framework

6 days 3 hours ago
Accurate predictive models of future disease onset are crucial for effective preventive healthcare, yet longitudinal data sets linking early risk factors to subsequent health outcomes are limited. To overcome this challenge, we introduce a novel framework, Predictive Risk modeling using Mendelian Randomization (PRiMeR), which utilizes genetic effects as supervisory signals to learn disease risk predictors without relying on longitudinal data. To do so, PRiMeR leverages risk factors and genetic...
Daniel Sens

GV-971 prevents severe acute pancreatitis by remodeling the microbiota-metabolic-immune axis

6 days 3 hours ago
Despite recent advances, severe acute pancreatitis (SAP) remains a lethal inflammation with limited treatment options. Here, we provide compelling evidence of GV-971 (sodium oligomannate), an anti-Alzheimer's medication, as being a protective agent in various male mouse SAP models. Microbiome sequencing, along with intestinal microbiota transplantation and mass cytometry technology, unveil that GV-971 reshapes the gut microbiota, increasing Faecalibacterium populations and modulating both...
Xi Chen

SOLID: minimizing tissue distortion for brain-wide profiling of diverse architectures

6 days 3 hours ago
Brain-wide profiling of diverse biological components is fundamental for understanding complex brain pathology. Despite the availability in whole-brain imaging, it is still challenging to conduct multiplexed, brain-wide analysis with current tissue clearing techniques. Here, we propose SOLID, a hydrophobic tissue clearing method that can minimize tissue distortion while offering impressive clearing performance. SOLID achieves high-quality imaging of multi-color labeled mouse brain, and the...
Jingtan Zhu

Lost in translation: Inconvenient truths on the utility of mouse models in Alzheimer's disease research

6 days 3 hours ago
The recent, controversial approval of antibody-based treatments for Alzheimer's disease (AD) is fueling a heated debate on the molecular determinants of this condition. The discussion should also incorporate a critical revision of the limitations of preclinical mouse models in advancing our understanding of AD. We critically discuss the limitations of animal models, stressing the need for careful consideration of how experiments are designed and results interpreted. We identify the shortcomings...
Alberto Granzotto

Poly ADP-ribose signaling is dysregulated in Huntington disease

6 days 3 hours ago
Huntington disease (HD) is a genetic neurodegenerative disease caused by cytosine, adenine, guanine (CAG) expansion in the Huntingtin (HTT) gene, translating to an expanded polyglutamine tract in the HTT protein. Age at disease onset correlates to CAG repeat length but varies by decades between individuals with identical repeat lengths. Genome-wide association studies link HD modification to DNA repair and mitochondrial health pathways. Clinical studies show elevated DNA damage in HD, even at...
Tamara Maiuri
Checked
1 hour 36 minutes ago
Alzheimer and Parkinson: Latest results from PubMed
Subscribe to Alzheimer & Parkinson feed