Aggregator
Why did Earth’s first radio message to alien civilizations leave out half of humanity?
South Korea can boost the research potential of low-income countries
‘I get paid for my outputs, not because I am Māori’: why Indigenous researchers often face double duty
Why we are all lab rats in the digital world
Worryingly high prevalence of retraction among top-cited researchers
Devastating Spanish floods expose an urgent need for more flood-risk professionals
Ignoring journal metrics on CVs is an act of privilege
Growth area: early studies exploring how tissues and cells grow
Systemic biases are leading to an intersex research void
Research advocates see ‘no good news’ in Trump’s economic, immigration agenda
Republican control of Congress will help him with agency appointments and policy shifts
Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions
Neurodegenerative diseases, as common diseases in the elderly, tend to become younger due to environmental changes, social development and other factors. They are mainly characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system, and common diseases include Parkinson's disease, Alzheimer's disease, Huntington's disease and so on. Mitochondria are important organelles for adenosine triphosphate (ATP) production in the brain. In recent years, a large...
GNG5 is a novel regulator of Abeta42 production in Alzheimer's disease
The therapeutic options for Alzheimer's disease (AD) are limited, underscoring the critical need for finding an effective regulator of Aβ42 production. In this study, with 489 human postmortem brains, we revealed that homotrimer G protein subunit gamma 5 (GNG5) expression is upregulated in the hippocampal-entorhinal region of pathological AD compared with normal controls, and is positively correlated with Aβ pathology. In vivo and in vitro experiments confirm that increased GNG5 significantly...
ASC specks as a single-molecule fluid biomarker of inflammation in neurodegenerative diseases
Immunotherapeutic strategies for Alzheimer's and Parkinson's disease would be facilitated by better measures of inflammation. Here we established an ultra-sensitive single-molecule pull-down immunoassay combined with direct stochastic optical reconstruction microscopy (dSTORM) to measure the number, size and shape of individual extracellular inflammasome ASC specks. We assayed human post-mortem brain, serum and cerebrospinal fluid of patients with Parkinson's and Alzheimer's as well as healthy...
TYK2 regulates tau levels, phosphorylation and aggregation in a tauopathy mouse model
Alzheimer's disease is one of at least 26 diseases characterized by tau-positive accumulation in neurons, glia or both. However, it is still unclear what modifications cause soluble tau to transform into insoluble aggregates. We previously performed genetic screens that identified tyrosine kinase 2 (TYK2) as a candidate regulator of tau levels. Here we verified this finding and found that TYK2 phosphorylates tau at tyrosine 29 (Tyr29) leading to its stabilization and promoting its aggregation in...
Astrocyte transcriptomic changes along the spatiotemporal progression of Alzheimer's disease
Astrocytes are crucial to brain homeostasis, yet their changes along the spatiotemporal progression of Alzheimer's disease (AD) neuropathology remain unexplored. Here we performed single-nucleus RNA sequencing of 628,943 astrocytes from five brain regions representing the stereotypical progression of AD pathology across 32 donors spanning the entire normal aging to severe AD continuum. We mapped out several unique astrocyte subclusters that exhibited varying responses to neuropathology across...
Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and implicates causal proteins for Alzheimer's disease
The integration of quantitative trait loci (QTLs) with disease genome-wide association studies (GWASs) has proven successful in prioritizing candidate genes at disease-associated loci. QTL mapping has been focused on multi-tissue expression QTLs or plasma protein QTLs (pQTLs). We generated a cerebrospinal fluid (CSF) pQTL atlas by measuring 6,361 proteins in 3,506 samples. We identified 3,885 associations for 1,883 proteins, including 2,885 new pQTLs, demonstrating unique genetic regulation in...
Genetic architecture of cerebrospinal fluid and brain metabolite levels and the genetic colocalization of metabolites with human traits
Brain metabolism perturbation can contribute to traits and diseases. We conducted a genome-wide association study for cerebrospinal fluid (CSF) and brain metabolite levels, identifying 205 independent associations (47.3% new signals, containing 11 new loci) for 139 CSF metabolites, and 32 independent associations (43.8% new signals, containing 4 new loci) for 31 brain metabolites. Of these, 96.9% (CSF) and 71.4% (brain) of the new signals belonged to previously analyzed metabolites in blood or...
Stay social, stay young: a bioanthropological outlook on the processes linking sociality and ageing
In modern human societies, social interactions and pro-social behaviours are associated with better individual and collective health, reduced mortality, and increased longevity. Conversely, social isolation is a predictor of shorter lifespan. The biological processes through which sociality affects the ageing process, as well as healthspan and lifespan, are still poorly understood. Unveiling the physiological, neurological, genomic, epigenomic, and evolutionary mechanisms underlying the...
Prediction of bone mineral density based on computer tomography images using deep learning model
Introduction The problem of population aging is intensifying worldwide. Osteoporosis has become an important cause affecting the health status of older populations. However, the diagnosis of osteoporosis and people's understanding of it are seriously insufficient. We aim to develop a deep learning model to automatically measure bone mineral density (BMD) and improve the diagnostic rate of osteoporosis. Methods The images of 801 subjects with 2080 vertebral bodies who underwent abdominal paired...
Chronic social stress induces p16-mediated senescent cell accumulation in mice
Life stress can shorten lifespan and increase risk for aging-related diseases, but the biology underlying this phenomenon remains unclear. Here we assessed the effect of chronic stress on cellular senescence-a hallmark of aging. Exposure to restraint stress, a psychological non-social stress model, increased p21^(Cip1) exclusively in the brains of male, but not female mice, and in a p16^(Ink4a)-independent manner. Conversely, exposure to chronic subordination stress (only males were tested)...