Skip to main content

Alzheimer & Parkinson

Comprehensive characterization of the transcriptional landscape in Alzheimer's disease (AD) brains

3 months ago
Alzheimer's disease (AD) is the leading dementia among the elderly with complex origins. Despite extensive investigation into the AD-associated protein-coding genes, the involvement of noncoding RNAs (ncRNAs) and posttranscriptional modification (PTM) in AD pathogenesis remains unclear. Here, we comprehensively characterized the landscape of ncRNAs and PTM events in 1460 samples across six brain regions sourced from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study and Mayo cohorts,...
Chengxuan Chen

Immunoassay detection of multiphosphorylated tau proteoforms as cerebrospinal fluid and plasma Alzheimer's disease biomarkers

3 months ago
Different forms of phosphorylated tau (p-tau) have shown strong potential as Alzheimer's disease (AD) biomarkers in both cerebrospinal fluid (CSF) and plasma. We hypothesized that p-tau proteoforms simultaneously phosphorylated at two different sites may have an increased diagnostic value compared with tau phosphorylated at a single site. Here, we developed two immunoassays detecting CSF and plasma tau simultaneously phosphorylated at both T181 and T231 (p-tau181&231) and at T217 and T231...
Anna L Wojdała

Modulation of glymphatic system by visual circuit activation alleviates memory impairment and apathy in a mouse model of Alzheimer's disease

3 months ago
Alzheimer's disease is characterized by progressive amyloid deposition and cognitive decline, yet the pathological mechanisms and treatments remain elusive. Here we report the therapeutic potential of low-intensity 40 hertz blue light exposure in a 5xFAD mouse model of Alzheimer's disease. Our findings reveal that light treatment prevents memory decline in 4-month-old 5xFAD mice and motivation loss in 14-month-old 5xFAD mice, accompanied by restoration of glial water channel aquaporin-4...
Wen Wu

Tgm2-Catalyzed Covalent Cross-Linking of IκBα Drives NF-κB Nuclear Translocation to Promote SASP in Senescent Microglia

3 months ago
Microglia, as resident immune cells in the central nervous system (CNS), play a crucial role in maintaining homeostasis and phagocytosing metabolic waste in the brain. Senescent microglia exhibit decreased phagocytic capacity and increased neuroinflammation through senescence-associated secretory phenotype (SASP). This process contributes to the development of various neurodegenerative diseases, including Alzheimer's disease (AD). In this study, we found that SASP was elevated in senescent...
Zhiqiang Li

Statins for vascular dementia: A hype or hope

3 months ago
Vascular dementia (VaD) is a second most common type of dementia subsequent to Alzheimer disease (AD). VaD is characterized by cognitive impairment and memory loss that may progress due to the development of cerebral amyloid angiopathy (CAA) a hallmark of AD. CAA triggers the progression of ischemic and hemorrhagic strokes with the subsequent the development of VaD and mixed dementia. Early diagnosis of patients with appropriate use of anti-inflammatory can prevent CAA-related inflammation and...
Hussein A Rajab

Drug inhibition and substrate transport mechanisms of human VMAT2

3 months ago
Vesicular monoamine transporter 2 (VMAT2) is crucial for packaging monoamine neurotransmitters into synaptic vesicles, with their dysregulation linked to schizophrenia, mood disorders, and Parkinson's disease. Tetrabenazine (TBZ) and valbenazine (VBZ), both FDA-approved VMAT2 inhibitors, are employed to treat chorea and tardive dyskinesia (TD). Our study presents the structures of VMAT2 bound to substrates serotonin (5-HT) and dopamine (DA), as well as the inhibitors TBZ and VBZ. Utilizing...
Feiwen Wei

Deep learning predicts DNA methylation regulatory variants in specific brain cell types and enhances fine mapping for brain disorders

3 months ago
DNA methylation (DNAm) is essential for brain development and function and potentially mediates the effects of genetic risk variants underlying brain disorders. We present INTERACT, a transformer-based deep learning model to predict regulatory variants affecting DNAm levels in specific brain cell types, leveraging existing single-nucleus DNAm data from the human brain. We show that INTERACT accurately predicts cell type-specific DNAm profiles, achieving an average area under the receiver...
Jiyun Zhou

Increased alpha-synuclein phosphorylation and oligomerization and altered enzymes in plasma of patients with Parkinson's disease

3 months ago
The brain of patients with Parkinson's disease (PD) was characterized by increased phosphorylation and oligomerization of α-synuclein (α-syn) and altered activity of enzymes regulating α-syn phosphorylation and oligomerization. Whether increased α-syn phosphorylation and oligomerization as well as related enzyme changes can be detected in the plasma of PD patients remains unclear. Here, we showed that human α-syn proteins incubated in PD plasma formed more oligomerized α-syn (O-α-syn) and...
Na Yin

The effects of loss of Y chromosome on male health

3 months ago
Loss of Y chromosome (LOY) is the most commonly occurring post-zygotic (somatic) mutation in male individuals. The past decade of research suggests that LOY has important effects in shaping the activity of the immune system, and multiple studies have shown the effects of LOY on a range of diseases, including cancer, neurodegeneration, cardiovascular disease and acute infection. Epidemiological findings have been corroborated by functional analyses providing insights into the mechanisms by which...
Bozena Bruhn-Olszewska

Longitudinal network changes and phenoconversion risk in isolated REM sleep behavior disorder

3 months ago
Isolated rapid eye movement sleep behavior disorder is a prodrome of α-synucleinopathies. Using positron emission tomography, we assessed changes in Parkinson's disease-related motor and cognitive metabolic networks and caudate/putamen dopaminergic input in a 4-year longitudinal imaging study of 13 male subjects with this disorder. We also correlated times to phenoconversion with baseline network expression in an independent validation sample. Expression values of both Parkinson's...
Chris C Tang

Higher skeletal muscle mitochondrial oxidative capacity is associated with preserved brain structure up to over a decade

3 months ago
Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k(PCr)) is associated with less ventricular enlargement and brain aging progression, and less atrophy...
Qu Tian

Integrative determination of atomic structure of mutant huntingtin exon 1 fibrils implicated in Huntington disease

3 months ago
Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained...
Mahdi Bagherpoor Helabad

Photoswitch dissociation from a G protein-coupled receptor resolved by time-resolved serial crystallography

3 months ago
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A(2A) receptor. For this, we designed seven photochemical affinity switches derived from the anti-Parkinson's drug istradefylline. In a rational...
Hannah Glover

Structural inequality linked to brain volume and network dynamics in aging and dementia across the Americas

3 months 1 week ago
Structural inequality, the uneven distribution of resources and opportunities, influences health outcomes. However, the biological embedding of structural inequality in aging and dementia, especially among underrepresented populations, is unclear. We examined the association between structural inequality (country-level and state-level Gini indices) and brain volume and connectivity in 2,135 healthy controls, and individuals with Alzheimer's disease and frontotemporal lobe degeneration from Latin...
Agustina Legaz

Proteome profiling of cerebrospinal fluid using machine learning shows a unique protein signature associated with APOE4 genotype

3 months 1 week ago
Proteome changes associated with APOE4 variant carriage that are independent of Alzheimer's disease (AD) pathology and diagnosis are unknown. This study investigated APOE4 proteome changes in people with AD, mild cognitive impairment, and no impairment. Clinical, APOE genotype, and cerebrospinal fluid (CSF) proteome and AD biomarker data was sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Proteome profiling was done using supervised machine learning. We found an...
Artur Shvetcov

A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion

3 months 1 week ago
The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes. Autonomous activation of ISR in microglia is sufficient to induce early features of the ultrastructurally distinct "dark microglia" linked to...
Anna Flury

In vivo hyperphosphorylation of tau is associated with synaptic loss and behavioral abnormalities in the absence of tau seeds

3 months 1 week ago
Tau pathology is a hallmark of several neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease. However, the sequence of events and the form of tau that confers toxicity are still unclear, due in large part to the lack of physiological models of tauopathy initiation and progression in which to test hypotheses. We have developed a series of targeted mice expressing frontotemporal-dementia-causing mutations in the humanized MAPT gene to investigate the earliest stages...
Naoto Watamura

Synaptic sabotage: How Tau and α-Synuclein undermine synaptic health

3 months 1 week ago
Synaptic dysfunction is one of the earliest cellular defects observed in Alzheimer's disease (AD) and Parkinson's disease (PD), occurring before widespread protein aggregation, neuronal loss, and cognitive decline. While the field has focused on the aggregation of Tau and α-Synuclein (α-Syn), emerging evidence suggests that these proteins may drive presynaptic pathology even before their aggregation. Therefore, understanding the mechanisms by which Tau and α-Syn affect presynaptic terminals...
Valerie Uytterhoeven

Neuronal constitutive endolysosomal perforations enable α-synuclein aggregation by internalized PFFs

3 months 1 week ago
Endocytosis, required for the uptake of receptors and their ligands, can also introduce pathological aggregates such as α-synuclein (α-syn) in Parkinson's Disease. We show here the unexpected presence of intrinsically perforated endolysosomes in neurons, suggesting involvement in the genesis of toxic α-syn aggregates induced by internalized preformed fibrils (PFFs). Aggregation of endogenous α-syn in late endosomes and lysosomes of human iPSC-derived neurons (iNs), seeded by internalized α-syn...
Anwesha Sanyal
Checked
4 hours 33 minutes ago
Alzheimer and Parkinson: Latest results from PubMed
Subscribe to Alzheimer & Parkinson feed