Alzheimer & Parkinson
Identification of AS1842856 as a novel small-molecule GSK3α/β inhibitor against Tauopathy by accelerating GSK3α/β exocytosis
Glycogen synthase kinase-3α/β (GSK3α/β) is a critical kinase for Tau hyperphosphorylation which contributes to neurodegeneration. Despite the termination of clinical trials for GSK3α/β inhibitors in Alzheimer's disease (AD) treatment, there is a pressing need for novel therapeutic strategies targeting GSK3α/β. Here, we identified the compound AS1842856 (AS), a specific forkhead box protein O1 (FOXO1) inhibitor, reduced intracellular GSK3α/β content in a FOXO1-independent manner. Specifically, AS...
Glial <em>swip-10</em> controls systemic mitochondrial function, oxidative stress, and neuronal viability via copper ion homeostasis
Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene MBLAC1 encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast...
The primary cilium of cholinergic neurons may be a linchpin in the progression of Parkinson's Disease
No abstract
Correction to Supporting Information for Woerman et al., Familial Parkinson's point mutation abolishes multiple system atrophy prion replication
No abstract
Structural basis of CDNF interaction with the UPR regulator GRP78
Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that is a disease-modifying drug candidate for Parkinson's disease. CDNF has pleiotropic protective effects on stressed cells, but its mechanism of action remains incompletely understood. Here, we use state-of-the-art advanced structural techniques to resolve the structural basis of CDNF interaction with GRP78, the master regulator of the unfolded protein response (UPR) pathway. Subsequent binding studies...
Olfactory deficit and gastrointestinal dysfunction precede motor abnormalities in alpha-Synuclein G51D knock-in mice
Parkinson's disease (PD) is typically a sporadic late-onset disorder, which has made it difficult to model in mice. Several transgenic mouse models bearing mutations in SNCA, which encodes alpha-Synuclein (α-Syn), have been made, but these lines do not express SNCA in a physiologically accurate spatiotemporal pattern, which limits the ability of the mice to recapitulate the features of human PD. Here, we generated knock-in mice bearing the G51D SNCA mutation. After establishing that their motor...
Ageing, proteostasis, and the gut: Insights into neurological health and disease
Recent research has illuminated the profound bidirectional communication between the gastrointestinal tract and the brain, furthering our understanding of neurological ailments facilitating possible therapeutic strategies. Technological advancements in high-throughput sequencing and multi-omics have unveiled significant alterations in gut microbiota and their metabolites in various neurological disorders. This review provides a thorough analysis of the role of microbiome-gut-brain axis in...
Author Correction: Serum proteomics reveal APOE-epsilon4-dependent and APOE-epsilon4-independent protein signatures in Alzheimer's disease
No abstract
Understanding exogenous factors and biological mechanisms for cognitive frailty: A multidisciplinary scoping review
Cognitive frailty (CF) is the conjunction of cognitive impairment without dementia and physical frailty. While predictors of each element are well-researched, mechanisms of their co-occurrence have not been integrated, particularly in terms of relationships between social, psychological, and biological factors. This interdisciplinary scoping review set out to categorise a heterogenous multidisciplinary literature to identify potential pathways and mechanisms of CF, and research gaps. Studies...
Co-opting templated aggregation to degrade pathogenic tau assemblies and improve motor function
Protein aggregation causes a wide range of neurodegenerative diseases. Targeting and removing aggregates, but not the functional protein, is a considerable therapeutic challenge. Here, we describe a therapeutic strategy called "RING-Bait," which employs an aggregating protein sequence combined with an E3 ubiquitin ligase. RING-Bait is recruited into aggregates, whereupon clustering dimerizes the RING domain and activates its E3 function, resulting in the degradation of the aggregate complex. We...
A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes
Numerous eukaryotic toxins that accumulate in geophytic plants are valuable in the clinic, yet their biosynthetic pathways have remained elusive. A notable example is the >150 Amaryllidaceae alkaloids (AmAs), including galantamine, an FDA-approved treatment for Alzheimer's disease. We show that while AmAs accumulate to high levels in many daffodil tissues, biosynthesis is localized to nascent, growing tissue at the leaf base. A similar trend is found in the production of steroidal alkaloids...
Lewy body pathology exacerbates brain hypometabolism and cognitive decline in Alzheimer's disease
Identifying concomitant Lewy body (LB) pathology through seed amplification assays (SAA) might enhance the diagnostic and prognostic work-up of Alzheimer's disease (AD) in clinical practice and trials. This study examined whether LB pathology exacerbates AD-related disease progression in 795 cognitively impaired individuals (Mild Cognitive Impairment and dementia) from the longitudinal multi-center observational ADNI cohort. Participants were on average 75 years of age (SD = 7.89), 40.8% were...
Evaluating the distinct effects of body mass index at childhood and adulthood on adult major psychiatric disorders
Children with high body mass index (BMI) are at heightened risk of developing health issues in adulthood, yet the causality between childhood BMI and adult psychiatric disorders remains unclear. Using a life course Mendelian randomization (MR) framework, we investigated the causal effects of childhood and adulthood BMI on adult psychiatric disorders, including Alzheimer's disease, anxiety, major depressive disorder, obsessive-compulsive disorder (OCD), and schizophrenia, using data from the...
Distinct tumor architectures and microenvironments for the initiation of breast cancer metastasis in the brain
Brain metastasis, a serious complication of cancer, hinges on the initial survival, microenvironment adaptation, and outgrowth of disseminated cancer cells. To understand the early stages of brain colonization, we investigated two prevalent sources of cerebral relapse, triple-negative (TNBC) and HER2+ (HER2BC) breast cancers. Using mouse models and human tissue samples, we found that these tumor types colonize the brain, with a preference for distinctive tumor architectures, stromal interfaces,...
Therapeutic efficacy of intracerebral hematopoietic stem cell gene therapy in an Alzheimer's disease mouse model
The conditions supporting the generation of microglia-like cells in the central nervous system (CNS) after transplantation of hematopoietic stem/progenitor cells (HSPC) have been studied to advance the treatment of neurodegenerative disorders. Here, we explored the transplantation efficacy of different cell subsets and delivery routes with the goal of favoring the establishment of a stable and exclusive engraftment of HSPCs and their progeny in the CNS of female mice. In this setting, we show...
Genentech, Sangamo ink Alzheimer's deal
No abstract
RTP801 interacts with the tRNA ligase complex and dysregulates its RNA ligase activity in Alzheimer's disease
RTP801/REDD1 is a stress-responsive protein overexpressed in neurodegenerative diseases such as Alzheimer's disease (AD) that contributes to cognitive deficits and neuroinflammation. Here, we found that RTP801 interacts with HSPC117, DDX1 and CGI-99, three members of the tRNA ligase complex (tRNA-LC), which ligates the excised exons of intron-containing tRNAs and the mRNA exons of the transcription factor XBP1 during the unfolded protein response (UPR). We also found that RTP801 modulates the...
Midnolin, a Genetic Risk Factor for Parkinson's Disease, Promotes Neurite Outgrowth Accompanied by Early Growth Response 1 Activation in PC12 Cells
Parkinson's disease (PD) is an age-related progressive neurodegenerative disease. Previously, we identified midnolin (MIDN) as a genetic risk factor for PD. Although MIDN copy number loss increases the risk of PD, the molecular function of MIDN remains unclear. To investigate the role of MIDN in PD, we established monoclonal Midn knockout (KO) PC12 cell models. Midn KO inhibited neurite outgrowth and neurofilament light chain (Nefl) gene expression. Although MIDN is mainly localized in the...
Altered firing output of VIP interneurons and early dysfunctions in CA1 hippocampal circuits in the 3xTg mouse model of Alzheimer's disease
Alzheimer's disease (AD) leads to progressive memory decline, and alterations in hippocampal function are among the earliest pathological features observed in human and animal studies. GABAergic interneurons (INs) within the hippocampus coordinate network activity, among which type 3 interneuron-specific (I-S3) cells expressing vasoactive intestinal polypeptide and calretinin play a crucial role. These cells provide primarily disinhibition to principal excitatory cells (PCs) in the hippocampal...
Remember oligodendrocytes: Uncovering their overlooked role in Alzheimer's disease
Our understanding of Alzheimer's disease (AD) has evolved from focusing solely on neurons to recognizing the role of glia. A recent study in PLOS Biology revealed that oligodendrocytes are an important source of Aβ that impairs neuronal function.
Alzheimer and Parkinson: Latest results from PubMed
Subscribe to Alzheimer & Parkinson feed