Alzheimer & Parkinson
CSF and blood glial fibrillary acidic protein for the diagnosis of Alzheimer's disease: A systematic review and meta-analysis
Recently included in the 2024 new revised diagnostic criteria of Alzheimer's disease (AD), glial fibrillary acidic protein (GFAP) has garnered significant attention. A systematic review and meta-analysis were performed to comprehensively evaluate the diagnostic, differential diagnostic, and prospective diagnostic performance of GFAP in cerebrospinal fluid (CSF) and blood for AD continuum. A literature search using common electronic databases, important websites and historical search way was...
Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease: Breaking the memory barrier
Alzheimer's disease (AD) is the most common cause of dementia and accounts for 60-70 % of all cases. It affects millions of people worldwide. AD poses a substantial economic burden on societies and healthcare systems. AD is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. As the prevalence of AD continues to increase, understanding its pathogenesis, improving diagnostic methods, and developing effective therapeutics have...
Deciphering the role of miRNAs in Alzheimer's disease: Predictive targeting and pathway modulation - A systematic review
Alzheimer's Disease (AD), a multifaceted neurodegenerative disorder, is increasingly understood through the regulatory lens of microRNAs (miRNAs). This review comprehensively examines the pivotal roles of miRNAs in AD pathogenesis, shedding light on their influence across various pathways. We delve into the biogenesis and mechanisms of miRNAs, emphasizing their significant roles in brain function and regulation. The review then navigates the complex landscape of AD pathogenesis, identifying key...
Dysfunctional mitochondria in age-related neurodegeneration: Utility of melatonin as an antioxidant treatment
Mitochondria functionally degrade as neurons age. Degenerative changes cause inefficient oxidative phosphorylation (OXPHOS) and elevated electron leakage from the electron transport chain (ETC) promoting increased intramitochondrial generation of damaging reactive oxygen and reactive nitrogen species (ROS and RNS). The associated progressive accumulation of molecular damage causes an increasingly rapid decline in mitochondrial physiology contributing to aging. Melatonin, a multifunctional free...
Analysis of the senescence-associated cell surfaceome reveals potential senotherapeutic targets
The accumulation of senescent cells is thought to play a crucial role in aging-associated physiological decline and the pathogenesis of various age-related pathologies. Targeting senescence-associated cell surface molecules through immunotherapy emerges as a promising avenue for the selective removal of these cells. Despite its potential, a thorough characterization of senescence-specific surface proteins remains to be achieved. Our study addresses this gap by conducting an extensive analysis of...
ERRalpha and ERRgamma coordinate expression of genes associated with Alzheimer's disease, inhibiting DKK1 to suppress tau phosphorylation
Alzheimer's disease (AD) is a prevalent neurodegenerative disease characterized by cognitive decline and learning/memory impairment associated with neuronal cell loss. Estrogen-related receptor α (ERRα) and ERRγ, which are highly expressed in the brain, have emerged as potential AD regulators, with unelucidated underlying mechanisms. Here, we identified genome-wide binding sites for ERRα and ERRγ in human neuronal cells. They commonly target a subset of genes associated with neurodegenerative...
Long-sought 'nuclear clocks' are one tick closer
No abstract
The SORL1 p.Y1816C variant causes impaired endosomal dimerization and autosomal dominant Alzheimer's disease
Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C...
Inhibition of colorectal cancer in Alzheimer's disease is mediated by gut microbiota via induction of inflammatory tolerance
Epidemiological studies have revealed an inverse relationship between the incidence of Alzheimer's disease (AD) and various cancers, including colorectal cancer (CRC). We aimed to determine whether the incidence of CRC is reduced in AD-like mice and whether gut microbiota confers resistance to tumorigenesis through inducing inflammatory tolerance using 16S ribosomal RNA gene sequencing and fecal microbiota transplantation (FMT). AD-like mice experienced a significantly decreased incidence of CRC...
Single-nucleus transcriptomic profiling of human orbitofrontal cortex reveals convergent effects of aging and psychiatric disease
Aging is a complex biological process and represents the largest risk factor for neurodegenerative disorders. The risk for neurodegenerative disorders is also increased in individuals with psychiatric disorders. Here, we characterized age-related transcriptomic changes in the brain by profiling ~800,000 nuclei from the orbitofrontal cortex from 87 individuals with and without psychiatric diagnoses and replicated findings in an independent cohort with 32 individuals. Aging affects all cell types,...
Additional feedforward mechanism of Parkin activation via binding of phospho-UBL and RING0 in <em>trans</em>
Loss-of-function Parkin mutations lead to early-onset of Parkinson's disease. Parkin is an auto-inhibited ubiquitin E3 ligase activated by dual phosphorylation of its ubiquitin-like (Ubl) domain and ubiquitin by the PINK1 kinase. Herein, we demonstrate a competitive binding of the phospho-Ubl and RING2 domains towards the RING0 domain, which regulates Parkin activity. We show that phosphorylated Parkin can complex with native Parkin, leading to the activation of autoinhibited native Parkin in...
Glymphotherapeutics for Alzheimer's disease: Time to move the needle
Alzheimer's disease (AD), the most predominant neurodegenerative disease and a quintessential entity within the dementia umbrella, is a global public health crisis. While the lack of disease modifying therapies has been a weak point in AD treatment, the success of recently approved monoclonal antibody-based therapeutics (aducanumab and lecanemab) targeted at the removal of amyloid-beta (Aβ) peptides in the brain is still under debate. There are multiple safety concerns about these approved...
Recent advancement in understanding of Alzheimer's disease: Risk factors, subtypes, and drug targets and potential therapeutics
Alzheimer's disease (AD) is a significant neocortical degenerative disorder characterized by the progressive loss of neurons and secondary alterations in white matter tracts. Understanding the risk factors and mechanisms underlying AD is crucial for developing effective treatments. The risk factors associated with AD encompass a wide range of variables, including gender differences, family history, and genetic predispositions. Additionally, environmental factors such as air pollution and...
Dopaminergic neurons lacking Caspase-3 avoid apoptosis but undergo necrosis after MPTP treatment inducing a Galectin-3-dependent selective microglial phagocytic response
Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc). Apoptosis is thought to play a critical role in the progression of PD, and thus understanding the effects of antiapoptotic strategies is crucial for developing potential therapies. In this study, we developed a unique genetic model to selectively delete Casp3, the gene encoding the apoptotic protein caspase-3, in dopaminergic neurons...
Acetyl-DL-leucine in two individuals with REM sleep behavior disorder improves symptoms, reverses loss of striatal dopamine-transporter binding and stabilizes pathological metabolic brain pattern-case reports
Isolated REM Sleep Behavior Disorder (iRBD) is considered a prodrome of Parkinson's disease (PD). We investigate whether the potentially disease-modifying compound acetyl-DL-leucine (ADLL; 5 g/d) has an effect on prodromal PD progression in 2 iRBD-patients. Outcome parameters are RBD-severity sum-score (RBD-SS-3), dopamine-transporter single-photon emission computerized tomography (DAT-SPECT) and metabolic "Parkinson-Disease-related-Pattern (PDRP)"-z-score in ^(18)F-fluorodeoxyglucose positron...
Ferroptosis in Parkinson's disease -- The iron-related degenerative disease
Parkinson's disease (PD) is a prevalent and advancing age-related neurodegenerative disorder, distinguished by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Iron regional deposit in SNpc is a significant pathological characteristic of PD. Brain iron homeostasis is precisely regulated by iron metabolism related proteins, whereas disorder of these proteins can damage neurons and glial cells in the brain. Additionally, growing studies have reported iron...
Emerging microglial biology highlights potential therapeutic targets for Alzheimer's disease
Alzheimer's disease is a chronic degenerative disease of the central nervous system, which primarily affects elderly people and accounts for 70-80 % of dementia cases. The current prevailing amyloid cascade hypothesis suggests that Alzheimer's disease begins with the deposition of amyloid β (Aβ) in the brain. Major therapeutic strategies target Aβ production, aggregation, and clearance, although many clinical trials have shown that these therapeutic strategies are not sufficient to completely...
Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD?...
ABCA7-dependent induction of neuropeptide Y is required for synaptic resilience in Alzheimer's disease through BDNF/NGFR signaling
Genetic variants in ABCA7, an Alzheimer's disease (AD)-associated gene, elevate AD risk, yet its functional relevance to the etiology is unclear. We generated a CRISPR-Cas9-mediated abca7 knockout zebrafish to explore ABCA7's role in AD. Single-cell transcriptomics in heterozygous abca7^(+/-) knockout combined with Aβ42 toxicity revealed that ABCA7 is crucial for neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), and nerve growth factor receptor (NGFR) expressions, which are crucial...
Aggregate-selective removal of pathological tau by clustering-activated degraders
Selective degradation of pathological protein aggregates while sparing monomeric forms is of major therapeutic interest. The E3 ligase tripartite motif-containing protein 21 (TRIM21) degrades antibody-bound proteins in an assembly state-specific manner due to the requirement of TRIM21 RING domain clustering for activation, yet effective targeting of intracellular assemblies remains challenging. Here, we fused the RING domain of TRIM21 to a target-specific nanobody to create intracellularly...
Alzheimer and Parkinson: Latest results from PubMed
Subscribe to Alzheimer & Parkinson feed