Skip to main content

Alzheimer & Parkinson

Use of magnetic resonance structural imaging to identify disease progression in patients with mild cognitive impairment: A voxel-based morphometry and surface-based morphometry study

1 month 3 weeks ago
Voxel-based morphometry (VBM) and surface-based morphometry (SBM) based on magnetic resonance structural imaging were used to identify disease progression in mild cognitive impairment (MCI) patients. A retrospective analysis was conducted on 154 MCI patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, with 62 patients classified into the progressive MCI (pMCI) group and 92 patients into the stable MCI (sMCI) group. VBM and SBM were employed to identify structural...
Zihan Zhang

NDP52 and its emerging role in pathogenesis

1 month 3 weeks ago
Autophagy is a pro-survival process that regulates the degradation and renewal of cellular components, making it a crucial mechanism for cellular homeostasis. There are selective forms of autophagy that are specific to a number of substrates, such as pathogens (bacteria or viruses), protein aggregates or excess/damaged organelles. These processes involve as key players autophagy receptors, that link the cargo to be degraded to the autophagic machinery. Among them, NDP52 (also known as CALCOCO2)...
Krenare Bruqi

Increased burden of rare risk variants across gene expression networks predisposes to sporadic Parkinson's disease

1 month 3 weeks ago
Alpha-synuclein (αSyn) is an intrinsically disordered protein that accumulates in the brains of patients with Parkinson's disease (PD). Through a high-throughput screen, we recently identified 38 genes whose knockdown modulates αSyn propagation. Here, we show that, among those, TAX1BP1 regulates how αSyn interacts with lipids, and ADAMTS19 modulates how αSyn phase separates into inclusions, adding to the growing body of evidence implicating those processes in PD. Through RNA sequencing, we...
Elena Eubanks

Dopaminergic neurons entering the brain under the immunological cover of darkness

1 month 4 weeks ago
The ability to transplant immunologically foreign cells into an animal without immune suppression would be transformative. Pavan et al. show that human pluripotent stem cell-derived dopaminergic neuron progenitors engineered to express eight immune-evasive proteins can engraft in humanized mice and a rat model of Parkinson's disease without recourse to immune suppression.¹.
Timothy Chai

The TransEuro open-label trial of human fetal ventral mesencephalic transplantation in patients with moderate Parkinson's disease

1 month 4 weeks ago
Transplantation of human fetal ventral mesencephalic tissue in individuals with Parkinson's disease has yielded clinical benefits but also side effects, such as graft-induced dyskinesias. The open-label TransEuro trial ( NCT01898390 ) was designed to determine whether this approach could be further developed into a clinically useful treatment. Owing to poor availability of human fetal ventral mesencephalic tissue, only 11 individuals were grafted at two centers using the same tissue preparation...
Roger A Barker

snCED-seq: high-fidelity cryogenic enzymatic dissociation of nuclei for single-nucleus RNA-seq of FFPE tissues

1 month 4 weeks ago
Recent advances have shown that single-nucleus RNA sequencing (snRNA-seq) can be applied to formalin-fixed, paraffin-embedded (FFPE) tissues, opening avenues for transcriptomic analysis of archived specimens. Yet, isolating intact nuclei remains difficult due to RNA cross-linking. Here, we introduce a cryogenic enzymatic dissociation (CED) strategy for rapid, high-yield and fidelity nuclei extraction from FFPE samples and validate its utility with snRandom-seq (snCED-seq) using male C57/BL6...
Yunxia Guo

Monocytes can efficiently replace all brain macrophages and fetal liver monocytes can generate bona fide SALL1<sup>+</sup> microglia

1 month 4 weeks ago
Microglia and border-associated macrophages (BAMs) are critical for brain health, and their dysfunction is associated to disease. Replacing brain macrophages holds substantial therapeutic promise but remains challenging. Here, we demonstrate that monocytes can efficiently replace all brain macrophages. Monocytes readily replaced embryonal BAMs upon their depletion and engrafted as monocyte-derived microglia (Mo-Microglia) upon more sustained niche availability. Mo-Microglia expanded comparably...
Jonathan Bastos

CLU alleviates Alzheimer's disease-relevant processes by modulating astrocyte reactivity and microglia-dependent synaptic density

1 month 4 weeks ago
Genetic studies implicate clusterin (CLU) in the pathogenesis of Alzheimer's disease (AD), yet its precise molecular impact remains unclear. Through unbiased proteomic profiling and functional validation in CLU-deficient astrocytes, we identify increased nuclear factor κB (NF-κB)-dependent signaling and complement C3 secretion. Reduction of astrocyte CLU induced microglia-dependent modulation of extracellular apolipoprotein E (APOE) and phosphorylated tau, as well as increased microglial...
Alexandra M Lish

Synaptic vesicle-omics in mice captures signatures of aging and synucleinopathy

1 month 4 weeks ago
Neurotransmitter release occurs through exocytosis of synaptic vesicles. α-Synuclein's function and dysfunction in Parkinson's disease and other synucleinopathies is thought to be tightly linked to synaptic vesicle binding. Age is the biggest risk factor for synucleinopathy, and ~15% of synaptic vesicle proteins have been linked to central nervous system diseases. Yet, age- and disease-induced changes in synaptic vesicles remain unexplored. Via systematic analysis of synaptic vesicles at the...
Virginia Gao

Identifying Age-Modulating Compounds Using a Novel Computational Framework for Evaluating Transcriptional Age

1 month 4 weeks ago
The differentiation of human pluripotent stem cells (hPSCs) provides access to a wide range of cell types and tissues. However, hPSC-derived lineages typically represent a fetal stage of development, and methods to expedite the transition to an aged identity to improve modeling of late-onset disease are limited. In this study, we introduce RNAge, a transcriptome-based computational platform designed to enable the evaluation of an induced aging or a rejuvenated state. We validated this approach...
Chao Zhang

Divergent actions of physiological and pathological amyloid-β on synapses in live human brain slice cultures

2 months ago
In Alzheimer's disease, amyloid beta (Aβ) and tau pathology are thought to drive synapse loss. However, there is limited information on how endogenous levels of tau, Aβ and other biomarkers relate to patient characteristics, or how manipulating physiological levels of Aβ impacts synapses in living adult human brain. Using live human brain slice cultures, we report that Aβ(1-40) and tau release levels vary with donor age and brain region, respectively. Release of other biomarkers such as KLK-6,...
Robert I McGeachan

Brain-wide microglia replacement using a nonconditioning strategy ameliorates pathology in mouse models of neurological disorders

2 months ago
Growing genetic and pathological evidence has identified microglial dysfunction as a key contributor to the pathogenesis and progression of various neurological disorders, positioning microglia replacement as a promising therapeutic strategy. Traditional bone marrow transplantation (BMT) methods for replenishing brain microglia have limitations, including low efficiency and the potential for brain injury because of preconditioning regimens, such as irradiation or chemotherapy. Moreover,...
Dadian Chen

Impaired parvalbumin interneurons in the retrosplenial cortex as the cause of sex-dependent vulnerability in Alzheimer's disease

2 months ago
Alzheimer's disease is a debilitating neurodegenerative disorder with no cure and few treatment options. In early stages of Alzheimer's disease, impaired metabolism and functional connectivity of the retrosplenial cortex strongly predict future cognitive impairments. Therefore, understanding Alzheimer's disease-related deficits in the retrosplenial cortex is critical for understanding the origins of cognitive impairment and identifying early treatment targets. Using the 5xFAD mouse model, we...
Dylan J Terstege

Biomimetic elasticity compressed assembly controls rapid intracerebral drug release to reverse microglial dysfunction

2 months ago
The regulation of microglial dysfunction has become increasingly prominent in treatment of Alzheimer's disease (AD). Herein, we develop a scalable polymer-involved biomimetic assembly that responds to intracerebral reactive oxygen species (ROS) for elastic spreading and concentration-dependent drug therapy. Structurally, a polymer of thermally sensitive deformation is selected for hydrophobic loading of curcumin (Cur) and coordinative grafting onto ultrasmall ceria (CeO(2)) by elastic...
Guochen Han

Alzheimer's disease patient-derived high-molecular-weight tau impairs bursting in hippocampal neurons

2 months ago
Tau accumulation is closely related to cognitive symptoms in Alzheimer's disease (AD). However, the cellular drivers of tau-dependent decline of memory-based cognition remain elusive. Here, we employed in vivo Neuropixels and patch-clamp recordings in mouse models and demonstrate that tau, independent of β-amyloid, selectively debilitates complex-spike burst firing of CA1 hippocampal neurons, a fundamental cellular mechanism underpinning learning and memory. Impaired bursting was associated with...
Samuel S Harris

CHAS infers cell type-specific signatures in bulk brain histone acetylation studies of neurological and psychiatric disorders

2 months ago
Epigenomic profiling of the brain has largely been done on bulk tissues, limiting our understanding of cell type-specific epigenetic changes in disease states. Here, we introduce cell type-specific histone acetylation score (CHAS), a computational tool for inferring cell type-specific signatures in bulk brain H3K27ac profiles. We applied CHAS to >300 H3K27ac chromatin immunoprecipitation sequencing samples from studies of Alzheimer's disease, Parkinson's disease, autism spectrum disorder,...
Kitty B Murphy

Accurate prediction of absolute prokaryotic abundance from DNA concentration

2 months ago
Quantification of the absolute microbial abundance in a human stool sample is crucial for a comprehensive understanding of the microbial ecosystem, but this information is lost upon metagenomic sequencing. While several methods exist to measure absolute microbial abundance, they are technically challenging and costly, presenting an opportunity for machine learning. Here, we observe a strong correlation between DNA concentration and the absolute number of 16S ribosomal RNA copies as measured by...
Jakob Wirbel

Lipid droplets: Emerging therapeutic targets for age-related metabolic diseases

2 months ago
Lipids metabolism is crucial in regulating aging and metabolic diseases. Lipid droplets (LDs) are dynamic, complex organelles responsible for the storage and release of neutral lipids, essential for maintaining lipid homeostasis and energy metabolism. Aging accelerates the accumulation of LDs, functional deterioration, and metabolic disorders, thereby inducing age-related metabolic diseases (ARMDs). This review examines published datasets on the association between LDs and ARMDs, focusing on the...
Zheying Ma

Facile generation of drug-like conformational antibodies specific for amyloid fibrils

2 months ago
Antibodies that recognize insoluble antigens, such as amyloid fibrils associated with neurodegenerative disorders, are important for research, diagnostic and therapeutic applications. However, these types of antibodies are difficult to generate, typically require animal immunization and also commonly require humanization in the case of therapeutic applications. Here we report a methodology for generating high-quality, fully human, conformation-specific antibodies against amyloid fibrils using a...
Alec A Desai
Checked
3 hours 43 minutes ago
Alzheimer and Parkinson: Latest results from PubMed
Subscribe to Alzheimer & Parkinson feed