Aggregator
Relationship between physical activity and DNA methylation-predicted epigenetic clocks
This study investigates the relationship between physical activity (PA) levels and DNA methylation (DNAm)-predicted epigenetic clocks in a U.S. population sample (n = 948, mean age 62, 49% female). Eight epigenetic clocks were analyzed, revealing that higher PA levels were significantly associated with younger biological ages across all indicators, with the strongest effects observed for SkinBloodAge and LinAge. Multivariable linear regression models, adjusted for sociodemographic and lifestyle...
Disuse-driven plasticity in the human thalamus and putamen
Subcortical plasticity has mainly been studied using invasive electrophysiology in animals. Here, we leverage precision functional mapping (PFM) to study motor plasticity in the human subcortex during 2 weeks of upper-extremity immobilization with daily resting-state and motor task fMRI. We found previously that, in the cortex, limb disuse drastically impacts disused primary motor cortex functional connectivity (FC) and is associated with spontaneous fMRI pulses. It remains unknown whether...
Aged Gut Microbiota Contributes to Cognitive Impairment and Hippocampal Synapse Loss in Mice
Gut microbiota alteration during the aging process serves as a causative factor for aging-related cognitive decline, which is characterized by the early hallmark, hippocampal synaptic loss. However, the impact and mechanistic role of gut microbiota in hippocampal synapse loss during aging remains unclear. Here, we observed that the fecal microbiota of naturally aged mice successfully transferred cognitive impairment and hippocampal synapse loss to young recipients. Multi-omics analysis revealed...
Oxidative stress at telomeres triggers internal DNA loops, TRF1 dissociation, and TRF2-dependent R-loops
Telomeres are the nucleoprotein structures at chromosome ends. Telomeres are particularly sensitive to oxidative stress, which can induce telomere damage, shortening, and premature cellular senescence. How oxidative damage influences telomere structure has not been defined. Here, we induce oxidative damage at telomeres using menadione, which damages mitochondria mimicking intrinsic oxidative stress. We find that oxidative stress induces at telomeres single-stranded DNA breaks, internal DNA loop...
Bryostatin-1 improves function in arteries with suppressed endothelial cell autophagy
We have previously reported that when autophagy is suppressed in endothelial cells (ECs), a glycolytic defect limits shear-stress -induced ATP production to an extent that purinergic 2Y1 receptor (P2Y1R)-mediated activation of EC nitric oxide (NO) synthase (eNOS) is compromised. Subsequently we demonstrated the functional relevance of this finding in arteries from mice with genetic, pharmacological, and age-associated EC autophagy impairment. Using gain and loss of function approaches in vitro,...
HDAC11 deficiency regulates age-related muscle decline and sarcopenia
Sarcopenia, defined as the progressive loss of skeletal muscle mass and function associated with ageing, has devastating effects in terms of reducing the quality of life of older people. Muscle ageing is characterised by muscle atrophy and decreased capacity for muscle repair, including a reduction in the muscle stem cell pool that impedes recovery after injury. Histone deacetylase 11 (HDAC11) is the newest member of the HDAC family and it is highly expressed in skeletal muscle. Our group...
SIRT2 suppresses aging-associated cGAS activation and protects aged mice from severe COVID-19
Aging-associated vulnerability to coronavirus disease 2019 (COVID-19) remains poorly understood. Here, we show that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected aged mice lacking SIRT2, a cytosolic NAD^(+)-dependent deacetylase, develop more severe disease and show increased mortality, while treatment with an NAD^(+) booster, 78c, protects aged mice from lethal infection. Mechanistically, we demonstrate that SIRT2 modulates the acetylation of cyclic GMP-AMP synthase...
Surprising discovery in world’s most studied plant can make seeds bigger
An overlooked “gate” governs nutrient transport to seeds and might one day boost harvests
Germany to create ‘super–high-tech ministry’ for research, technology, and aerospace
New governing coalition also plans to woo scientists from abroad and make it easier for universities to collaborate with the military on defense research
Trump seeks to end climate research at premier U.S. climate agency
White House aims to end NOAA’s research office; NASA also targeted
Four decades ago, this insect built its protective shell from human garbage
Study suggests microplastics have been affecting freshwater animal communities for decades
Fibril fuzzy coat is important for α-synuclein pathological transmission activity
α-synuclein transmission and propagation are hallmarks of synucleinopathies, yet the molecular mechanisms remain elusive. Using α-synuclein preformed fibrils as pathological seeds, we observed a gradual decline in neuronal transmission activity during serial propagation. Fibril polymorphisms were identified from the initial generation: mini-P, with higher neuronal seeding activity, and mini-S, which accelerated recombinant α-synuclein aggregation. Changes in their proportions during propagation...
Reevaluating Alzheimer's disease treatment: Can phytochemicals bridge the therapeutic Gap?
Alzheimer's disease (AD) is a growing neurological disorder giving impact cognition and memory, posing a global health challenge with over 55 million individuals affected. It is the 7th foremost cause of dying worldwide, and its pervasiveness is expected to twofold in each five years, reaching 115 million by 2050. AD is characterized by neurofibrillary tangles, senile plaques, and oxidative stress, leading to synaptic failure and cognitive decline. Currently, there is no cure, and available...
Pre-symptomatic Parkinson's disease blood test quantifying repetitive sequence motifs in transfer RNA fragments
Early, efficient Parkinson's disease (PD) tests may facilitate pre-symptomatic diagnosis and disease-modifying therapies. Here we report elevated levels of PD-specific transfer RNA fragments carrying a conserved sequence motif (RGTTCRA-tRFs) in the substantia nigra, cerebrospinal fluid and blood of patients with PD. A whole blood qPCR test detecting elevated RGTTCRA-tRFs and reduced mitochondrial-originated tRFs (MT-tRFs) segregated pre-symptomatic patients with PD from controls (area under the...
In vivo armed macrophages curb liver metastasis through tumor-reactive T-cell rejuvenation
Despite recent progress in cancer treatment, liver metastases persist as an unmet clinical need. Here, we show that arming liver and tumor-associated macrophages in vivo to co-express tumor antigens (TAs), IFNα, and IL-12 unleashes robust anti-tumor immune responses, leading to the regression of liver metastases. Mechanistically, in vivo armed macrophages expand tumor reactive CD8^(+) T cells, which acquire features of progenitor exhausted T cells and kill cancer cells independently of CD4^(+) T...
The diversity of CD8<sup>+</sup> T cell dysfunction in cancer and viral infection
CD8^(+) T cells that are repeatedly exposed to antigenic stimulation, such as in the context of progressing neoplasms and chronic viral infections, acquire a dysfunctional or hypofunctional state that is generally known as exhaustion. There have been considerable efforts to develop therapeutic strategies that prevent exhaustion in these pathological scenarios, but there has been limited success. This may be because exhaustion is not the only source of T cell hypofunction in cancer and chronic...
Fibroblast hierarchy dynamics during mammary gland morphogenesis and tumorigenesis
Fibroblasts form a major component of the stroma in normal mammary tissue and breast tumors. Here, we have applied longitudinal single-cell transcriptome profiling of >45,000 fibroblasts in the mouse mammary gland across five different developmental stages and during oncogenesis. In the normal gland, diverse stromal populations were resolved, including lobular-like fibroblasts, committed preadipocytes and adipogenesis-regulatory, as well as cycling fibroblasts in puberty and pregnancy. These...
Author Correction: A human progeria-associated BAF-1 mutation modulates gene expression and accelerates aging in C. elegans
No abstract
Microbiota-shaped neutrophil senescence regulates sexual dimorphism in bladder cancer
Sex disparities have been epidemiologically demonstrated in non-reproductive cancers, yet how the sex-specific intrinsic microbiome orchestrates the immune system to affect these disparities is unclear. Here we identify a subpopulation of RETNLG^(+)LCN2^(+) senescence-like neutrophils (RLSNs) that preferentially accumulate in the male tumor microenvironment and exert a strong immunosuppressive effect to limit antitumor immunity, resulting in poor prognosis for patients with bladder cancer. This...
Correction of dysregulated lipid metabolism normalizes gene expression in oligodendrocytes and prolongs lifespan in female poly-GA C9orf72 mice
Clinical and genetic research links altered cholesterol metabolism with ALS development and progression, yet pinpointing specific pathomechanisms remain challenging. We investigated how cholesterol dysmetabolism interacts with protein aggregation, demyelination, and neuronal loss in ALS. Bulk RNAseq transcriptomics showed decreased cholesterol biosynthesis and increased cholesterol export in ALS mouse models (GA-Nes, GA-Camk2a GA-CFP, rNLS8) and patient samples (spinal cord), suggesting an...