Aggregator
New biomarkers for early-stage tau pathology in Alzheimer's disease
No abstract
Microglia underlie amyloid-beta clearance in immunized people with Alzheimer disease
No abstract
The bridge-like lipid transport protein VPS13C/PARK23 mediates ER-lysosome contacts following lysosome damage
Based on genetic studies, lysosome dysfunction is thought to play a pathogenetic role in Parkinson's disease. Here we show that VPS13C, a bridge-like lipid-transport protein and a Parkinson's disease gene, is a sensor of lysosome stress or damage. Following lysosome membrane perturbation, VPS13C rapidly relocates from the cytosol to the surface of lysosomes where it tethers their membranes to the ER. This recruitment depends on Rab7 and requires a signal at the damaged lysosome surface that...
Brain cells given an 'invisibility cloak' fix Parkinson's symptoms in rats
No abstract
Expression of anti-amyloid CARs in microglia promotes efficient and selective phagocytosis of Aβ1‒42
Genetic engineering of microglial cells is a promising therapeutic avenue emerging with advancements in gene delivery techniques. Using a recently developed AAV capsid for efficient in vitro transduction we report the engineering of microglia with CARs (CAR-Mic) targeting phagocytosis of amyloid beta 1‒42 (Aβ42). Functional screening of seven CAR constructs in human iPSC-derived microglia revealed up to 6-fold increases in internalized Aβ relative to viral control. CAR-driven phagocytic...
Multi-ancestry GWAS identifies 16 novel Alzheimer disease risk loci
No abstract
Lower aperiodic EEG activity is associated with reduced verbal fluency performance across adulthood
Age-related cognitive decline associations with human electroencephalography (EEG) have previously focused on periodic activity. However, EEG primarily consists of non-oscillatory aperiodic activity, characterised with an exponent and offset value. In a secondary analysis of a cohort of 111 healthy participants aged 17 - 71 years, we examined the associations of the aperiodic exponent and offset in resting EEG with a battery of cognitive tests consisting of the Colour-Word Interference Test,...
The role of the three major intestinal barriers in ulcerative colitis in the elderly
With the unprecedented pace of global population aging, there has been a parallel epidemiological shift marked by increasing incidence rates of ulcerative colitis (UC) in geriatric populations, imposing a substantial disease burden on healthcare systems globally. The etiopathogenesis of UC in the elderly remains poorly delineated, while current therapeutic strategies require further optimization to accommodate the unique pathophysiological characteristics of elderly patients. This review...
Aging, regeneration and whole-body rejuvenation in long-lived planarians
No abstract
Timing of complex I activity and lifespan control
No abstract
Association between red and processed meat consumption and colorectal cancer risk: a comprehensive meta-analysis of prospective studies
Increasing evidence suggests that red and processed meat consumption may elevate the risk of colorectal cancer (CRC), yet the magnitude and consistency of this association remain debated. This meta-analysis aims to quantify the relationship between red and processed meat intake and the risk of CRC, colon cancer, and rectal cancer using the most comprehensive set of prospective studies to date. We conducted a comprehensive search in PubMed, Web of Science, Cochrane Library, Embase, and Google...
Associations of epigenetic aging and COVID- 19: A 3-year longitudinal study
Aging and COVID- 19 are known to influence DNA methylation, potentially affecting the rate of aging and the risk of disease. The physiological functions of 54 volunteers-including maximal oxygen uptake (VO₂ max), grip strength, and vertical jump-were assessed just before the COVID- 19 pandemic and again 3 years later. Of these volunteers, 27 had contracted COVID- 19. Eight epigenetic clocks were used to assess the rate of aging during the 3-year period: DNAmAge showed accelerated aging, and five...
Single-cell and spatial RNA sequencing identify divergent microenvironments and progression signatures in early- versus late-onset prostate cancer
The clinical and pathological outcomes differ between early-onset (diagnosed in men ≤55 years of age) and late-onset prostate cancer, potentially attributed to the changes in hormone levels and immune activities associated with aging. Exploring the heterogeneity therein holds potential for developing age-specific precision interventions. Here, through single-cell and spatial transcriptomic analyses of prostate cancer tissues, we identified that an androgen response-related transcriptional...
Perturb-tracing enables high-content screening of multi-scale 3D genome regulators
Three-dimensional (3D) genome organization becomes altered during development, aging and disease, but the factors regulating chromatin topology are incompletely understood and currently no technology can efficiently screen for new regulators of multi-scale chromatin organization. Here, we developed an image-based high-content screening platform (Perturb-tracing) that combines pooled CRISPR screens, a cellular barcode readout method (BARC-FISH) and chromatin tracing. We performed a...
Commander complex regulates lysosomal function and is implicated in Parkinson's disease risk
Variants in GBA1 resulting in decreased lysosomal glucocerebrosidase (GCase) activity are a common risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Incomplete penetrance of GBA1 variants suggests that additional genes contribute to PD and DLB manifestation. By using a pooled genome-wide CRISPR interference screen, we identified copper metabolism MURR1 domain-containing 3 (COMMD3) protein, a component of the COMMD/coiled-coil domain-containing protein 22...
Neddylation modification stabilizes LC3B by antagonizing its ubiquitin-mediated degradation and promoting autophagy in skin
The Atg8-family proteins, including LC3B (microtubule-associated protein 1 light chain 3 beta), are pivotal for key steps in the autophagy process. Proper regulation of LC3B homeostasis is essential for its function. Although LC3B is modulated by various posttranslational modifications (PTMs), the impact of these modifications on LC3B protein homeostasis remains unclear. Neddylation, a recently identified ubiquitin-like modification, plays diverse biological roles. Here, we identify LC3B as a...
Trade-offs in modeling context dependency in complex trait genetics
Genetic effects on complex traits may depend on context, such as age, sex, environmental exposures, or social settings. However, it remains often unclear if the extent of context dependency, or gene-by-environment interaction (GxE), merits more involved models than the additive model typically used to analyze data from genome-wide association studies (GWAS). Here, we suggest considering the utility of GxE models in GWAS as a trade-off between bias and variance parameters. In particular, we...
Fisetin: hormesis accounts for many of its chemoprotective effects
The present paper provides the first integrated assessment of the capacity of the flavonol, fisetin, to induce hormetic dose responses. Fisetin was shown to induce hormetic dose responses in cellular and in vivo animal model systems affecting a broad range of endpoints of potential therapeutic and public health significance across the entire lifespan. Fisetin was effective in slowing aging processes, acting as a senolytic agent in multiple organ systems, in an hormetic fashion. In addition,...
Spermidine toxicity in Saccharomyces cerevisiae due to mitochondrial complex III deficiency
Spermidine is a naturally occurring polyamine present in all cells and is necessary for viability in eukaryotic cells. The cellular levels of spermidine decline as an organism ages, and its supplementation has been found to extend lifespan in yeast, worms, flies, mice, and human cultured cells. The lifespan extending effect of spermidine is thought to be due to its ability to induce autophagy, a turnover of cellular components. Mitochondrial dysfunction is believed to be a major driver of the...
Unraveling the complexity of chaperone-mediated autophagy in aging: insights into sex-specific and cell-type-specific regulation
Chaperone-mediated autophagy (CMA) is a selective autophagic pathway that targets specific proteins for lysosomal degradation, playing a crucial role in maintaining cellular homeostasis. Recent research has highlighted the involvement of CMA in aging and age-related diseases, yet its regulation remains complex. The study by Khawaja et al. provides novel insights into the sex-specific and cell-type-specific regulation of CMA during aging. This commentary discusses the key findings of this study,...