Aggregator
The SORL1 p.Y1816C variant causes impaired endosomal dimerization and autosomal dominant Alzheimer's disease
Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C...
Inhibition of colorectal cancer in Alzheimer's disease is mediated by gut microbiota via induction of inflammatory tolerance
Epidemiological studies have revealed an inverse relationship between the incidence of Alzheimer's disease (AD) and various cancers, including colorectal cancer (CRC). We aimed to determine whether the incidence of CRC is reduced in AD-like mice and whether gut microbiota confers resistance to tumorigenesis through inducing inflammatory tolerance using 16S ribosomal RNA gene sequencing and fecal microbiota transplantation (FMT). AD-like mice experienced a significantly decreased incidence of CRC...
Single-nucleus transcriptomic profiling of human orbitofrontal cortex reveals convergent effects of aging and psychiatric disease
Aging is a complex biological process and represents the largest risk factor for neurodegenerative disorders. The risk for neurodegenerative disorders is also increased in individuals with psychiatric disorders. Here, we characterized age-related transcriptomic changes in the brain by profiling ~800,000 nuclei from the orbitofrontal cortex from 87 individuals with and without psychiatric diagnoses and replicated findings in an independent cohort with 32 individuals. Aging affects all cell types,...
Additional feedforward mechanism of Parkin activation via binding of phospho-UBL and RING0 in <em>trans</em>
Loss-of-function Parkin mutations lead to early-onset of Parkinson's disease. Parkin is an auto-inhibited ubiquitin E3 ligase activated by dual phosphorylation of its ubiquitin-like (Ubl) domain and ubiquitin by the PINK1 kinase. Herein, we demonstrate a competitive binding of the phospho-Ubl and RING2 domains towards the RING0 domain, which regulates Parkin activity. We show that phosphorylated Parkin can complex with native Parkin, leading to the activation of autoinhibited native Parkin in...
Glymphotherapeutics for Alzheimer's disease: Time to move the needle
Alzheimer's disease (AD), the most predominant neurodegenerative disease and a quintessential entity within the dementia umbrella, is a global public health crisis. While the lack of disease modifying therapies has been a weak point in AD treatment, the success of recently approved monoclonal antibody-based therapeutics (aducanumab and lecanemab) targeted at the removal of amyloid-beta (Aβ) peptides in the brain is still under debate. There are multiple safety concerns about these approved...
Recent advancement in understanding of Alzheimer's disease: Risk factors, subtypes, and drug targets and potential therapeutics
Alzheimer's disease (AD) is a significant neocortical degenerative disorder characterized by the progressive loss of neurons and secondary alterations in white matter tracts. Understanding the risk factors and mechanisms underlying AD is crucial for developing effective treatments. The risk factors associated with AD encompass a wide range of variables, including gender differences, family history, and genetic predispositions. Additionally, environmental factors such as air pollution and...
Dopaminergic neurons lacking Caspase-3 avoid apoptosis but undergo necrosis after MPTP treatment inducing a Galectin-3-dependent selective microglial phagocytic response
Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc). Apoptosis is thought to play a critical role in the progression of PD, and thus understanding the effects of antiapoptotic strategies is crucial for developing potential therapies. In this study, we developed a unique genetic model to selectively delete Casp3, the gene encoding the apoptotic protein caspase-3, in dopaminergic neurons...
Acetyl-DL-leucine in two individuals with REM sleep behavior disorder improves symptoms, reverses loss of striatal dopamine-transporter binding and stabilizes pathological metabolic brain pattern-case reports
Isolated REM Sleep Behavior Disorder (iRBD) is considered a prodrome of Parkinson's disease (PD). We investigate whether the potentially disease-modifying compound acetyl-DL-leucine (ADLL; 5 g/d) has an effect on prodromal PD progression in 2 iRBD-patients. Outcome parameters are RBD-severity sum-score (RBD-SS-3), dopamine-transporter single-photon emission computerized tomography (DAT-SPECT) and metabolic "Parkinson-Disease-related-Pattern (PDRP)"-z-score in ^(18)F-fluorodeoxyglucose positron...
Ferroptosis in Parkinson's disease -- The iron-related degenerative disease
Parkinson's disease (PD) is a prevalent and advancing age-related neurodegenerative disorder, distinguished by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Iron regional deposit in SNpc is a significant pathological characteristic of PD. Brain iron homeostasis is precisely regulated by iron metabolism related proteins, whereas disorder of these proteins can damage neurons and glial cells in the brain. Additionally, growing studies have reported iron...
Emerging microglial biology highlights potential therapeutic targets for Alzheimer's disease
Alzheimer's disease is a chronic degenerative disease of the central nervous system, which primarily affects elderly people and accounts for 70-80 % of dementia cases. The current prevailing amyloid cascade hypothesis suggests that Alzheimer's disease begins with the deposition of amyloid β (Aβ) in the brain. Major therapeutic strategies target Aβ production, aggregation, and clearance, although many clinical trials have shown that these therapeutic strategies are not sufficient to completely...
Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD?...
ABCA7-dependent induction of neuropeptide Y is required for synaptic resilience in Alzheimer's disease through BDNF/NGFR signaling
Genetic variants in ABCA7, an Alzheimer's disease (AD)-associated gene, elevate AD risk, yet its functional relevance to the etiology is unclear. We generated a CRISPR-Cas9-mediated abca7 knockout zebrafish to explore ABCA7's role in AD. Single-cell transcriptomics in heterozygous abca7^(+/-) knockout combined with Aβ42 toxicity revealed that ABCA7 is crucial for neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), and nerve growth factor receptor (NGFR) expressions, which are crucial...
Aggregate-selective removal of pathological tau by clustering-activated degraders
Selective degradation of pathological protein aggregates while sparing monomeric forms is of major therapeutic interest. The E3 ligase tripartite motif-containing protein 21 (TRIM21) degrades antibody-bound proteins in an assembly state-specific manner due to the requirement of TRIM21 RING domain clustering for activation, yet effective targeting of intracellular assemblies remains challenging. Here, we fused the RING domain of TRIM21 to a target-specific nanobody to create intracellularly...
Nuclear proteasomes buffer cytoplasmic proteins during autophagy compromise
Autophagy is a conserved pathway where cytoplasmic contents are engulfed by autophagosomes, which then fuse with lysosomes enabling their degradation. Mutations in core autophagy genes cause neurological conditions, and autophagy defects are seen in neurodegenerative diseases such as Parkinson's disease and Huntington's disease. Thus, we have sought to understand the cellular pathway perturbations that autophagy-perturbed cells are vulnerable to by seeking negative genetic interactions such as...
Tricking phages with a reverse move
Science, Volume 386, Issue 6717, Page 25-26, October 2024.
Polyolefin waste to light olefins with ethylene and base-metal heterogeneous catalysts
Science, Volume 385, Issue 6715, Page 1322-1327, September 2024.
MLKL-USP7-UBA52 signaling is indispensable for autophagy in brain through maintaining ubiquitin homeostasis
Individuals with genetic elimination of MLKL (mixed lineage kinase domain like pseudokinase) exhibit an increased susceptibility to neurodegenerative diseases like Alzheimer disease (AD). However, the mechanism is not yet fully understood. Here, we observed significant compromise in macroautophagy/autophagy in the brains of mlkl knockout (KO) mice, as evidenced by the downregulation of BECN1/Beclin1 and ULK1 (unc-51 like autophagy activating kinase 1). We identified UBA52 (ubiquitin A-52 residue...
On the pH-dependence of α-synuclein amyloid polymorphism and the role of secondary nucleation in seed-based amyloid propagation
The aggregation of the protein α-synuclein is closely associated with several neurodegenerative disorders and as such the structures of the amyloid fibril aggregates have high scientific and medical significance. However, there are dozens of unique atomic-resolution structures of these aggregates, and such a highly polymorphic nature of the α-synuclein fibrils hampers efforts in disease-relevant in vitro studies on α-synuclein amyloid aggregation. In order to better understand the factors that...
Lactoferrin/lactoferrin receptor: Neurodegenerative or neuroprotective in Parkinson's disease?
Lactoferrin (Lf) is a multifunctional protein in the transferrin family. It is involved in many physiological functions, including the regulation of iron absorption and immune response. It also has antibacterial, antiviral, anti-inflammatory, anticancer and antioxidant capabilities under pathophysiological conditions. The mammalian lactoferrin receptor (LfR) plays a key role in mediating multiple functions of Lf. Studies have shown that Lf/LfR is abnormally expressed in the brain of Parkinson's...
Decursin ameliorates neurotoxicity induced by glutamate through restraining ferroptosis by up-regulating FTH1 in SH-SY5Y neuroblastoma cells
Alzheimer's disease (AD) is the most common form of neurodegeneration which currently has no effective treatment. Ferroptosis is a new style of programmed cell death and is widely implicated in the pathogenesis and progression of AD. Decursin has been shown widely neuroprotective effects but poorly understood about the underlying mechanisms between decursin and ferroptosis in AD. Here, the protective effect of decursin and the underlying mechanism under glutamate treatment in SH-SY5Y cells was...