Aging & Longevity
Multiomic profiling reveals that prostaglandin E2 reverses aged muscle stem cell dysfunction, leading to increased regeneration and strength
Repair of muscle damage declines with age due to the accumulation of dysfunctional muscle stem cells (MuSCs). Here, we uncover that aged MuSCs have blunted prostaglandin E2 (PGE2)-EP4 receptor signaling, which causes precocious commitment and mitotic catastrophe. Treatment with PGE2 alters chromatin accessibility and overcomes the dysfunctional aged MuSC fate trajectory, increasing viability and triggering cell cycle re-entry. We employ neural network models to learn the complex logic of...
SIRT7 regulates NUCKS1 chromatin binding to elicit metabolic and inflammatory gene expression in senescence and liver aging
Sirtuin enzymes are deeply associated with senescence and aging. Sirtuin proteins are tightly regulated, but how their levels are governed during aging and how they elicit tissue-specific cellular changes are unclear. Here, we demonstrate that SIRT7 undergoes proteasomal degradation during senescence via targeting by the E3 ligase TRIP12. We identified the transcription factor nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) as an interactor of SIRT7 and found NUCKS1...
Senescence in cancer
Cellular senescence is a state of stable cell-cycle arrest induced by various intrinsic and extrinsic stressors, serving as a protective mechanism to prevent the proliferation of damaged cells. While this process is crucial for tissue homeostasis and tumor suppression, the progressive accumulation of senescent cells (SnCs) over time is implicated in age-related pathologies, including immune dysfunction and cancer. In oncology, senescence plays a paradoxical role: it can inhibit tumor development...
Exercise alters transcriptional profiles of senescence and gut barrier integrity in intestinal crypts of aging mice
Senescence is the gradual process of aging in tissues and cells, and a primary cause of aging-associated diseases. Among them, intestinal stem cells (ISCs) experience exhaustion during aging, leading to reduced regenerative capacity in the intestinal crypt, which impairs intestinal function and contributes to systemic health issues. Given the critical role ISCs play in maintaining intestinal homeostasis, preventing their senescence is essential for preserving intestinal function. Among the...
Reply to Ferraro et al.: Breed-and-feed reflects inevitable trade-offs between individual longevity and population sustainability
No abstract
Transgenerational epigenetic effect of kings' aging on offspring's caste fate mediated by sperm DNA methylation in termites
The discovery of transgenerational epigenetic inheritance and the unraveling of its molecular mechanisms are currently solving previously puzzling challenges that Mendelian genetics based solely on DNA could not explain, leading to significant paradigm shifts across various fields of biology. There has been a long-standing controversy over the factors determining the caste fate of individuals in social insects. Increasing evidence supports heritable influences on division of labor. Here, we...
Cerebral Metabolic Rate of Oxygen and Accelerometry-Based Fatigability in Community-Dwelling Older Adults
Alterations in energy metabolism may drive fatigue in older age, but prior research primarily focused on skeletal muscle energetics without assessing other systems and utilized self-reported measures of fatigue. We tested the association between energy metabolism in the brain and an objective measure of fatigability in the Study of Muscle, Mobility and Aging (N = 119, age 76.8 ± 4.0 years, 59.7% women). Total brain cerebral metabolic rate of oxygen (CMRO(2)) was measured using arterial spin...
Top-down attention and Alzheimer's pathology affect cortical selectivity during learning, influencing episodic memory in older adults
Effective memory formation declines in human aging. Diminished neural selectivity-reduced differential responses to preferred versus nonpreferred stimuli-may contribute to memory decline, but its drivers remain unclear. We investigated the effects of top-down attention and preclinical Alzheimer's disease (AD) pathology on neural selectivity in 166 cognitively unimpaired older participants using functional magnetic resonance imaging during a word-face/word-place associative memory task. During...
A role for microglia in mediating the microbiota-gut-brain axis
Microglia, the resident immune cells of the brain, are now recognized as being active participants in the onset and progression of many neurological and neuropsychiatric disorders. As a result, substantial effort has been made in finding ways to target, deplete or modulate the aberrant phenotypes of the microglia that are present in these different disease states, albeit with varied levels of success. The gut microbiota has recently emerged as a master regulator of microglia throughout the...
Aging alters the response to CAR T cell therapy
No abstract
Age-related differences in GABAergic synapses across the central inferior colliculus in the Fischer Brown Norway rat
Presbycusis, one of the most widespread disorders, is in part associated with the loss of temporal precision within the central auditory system. A contributor to the dysfunctional temporal precision during aging is the substantial downregulation of GABA in the central inferior colliculus (ICc), the hub of ascending and descending inputs of the auditory midbrain. However, how GABAergic inputs across the tonotopic axis of the ICc change with age has not been well explored. We sought to determine...
Targeting DNA damage in ageing: towards supercharging DNA repair
Ageing is the most important risk factor for many common human diseases, including cancer, diabetes, neurodegeneration and cardiovascular disease. Consequently, combating ageing itself has emerged as a rational strategy for addressing age-related multimorbidity. Over the past three decades, multiple genetic and pharmacologic interventions have led to substantial extension of lifespan and healthspan in model organisms. However, it is unclear whether these interventions target the causal...
Deficiency in N-cadherin-Akt3 signaling impairs the blood-brain barrier
The blood-brain barrier (BBB) restricts the passage of protein-rich fluids through tight junctions (TJs) formed between brain endothelial cells (BECs). BBB restrictiveness diminishes with aging, but the underlying mechanisms remain unclear. BECs establish physical contact with pericytes via N-cadherin homophilic adhesion. In cortex tissue from young and middle-aged patients, the age-related loss of vascular N-cadherin corresponds with the disruption of occludin TJs. Genetic deletion of...
CDADC1 is a vertebrate-specific dCTP deaminase that metabolizes gemcitabine and decitabine to prevent cellular toxicity
Cancer therapy is limited by resistance to standard-of-care chemotherapeutic and/or by treatment-associated toxicity. Identifying molecular mechanisms that modulate cellular toxicity is crucial for enhancing treatment efficacy. We characterize CDADC1, a vertebrate-specific orphan enzyme, as an unprecedented eukaryotic dCTP deaminase. CDADC1 catalyzes the conversion of dCTP into dUTP. While bacteria use this activity to sustain proliferation, CDADC1 evolved independently and is not required for...
Impact of sarcopenia and obesity on skeletal muscle size, gene expression, and mitochondrial function
Skeletal muscle is a primary tissue of dysfunction during both aging and obesity. Recently, the coincidence of obesity and aging has gained attention due to the intersection of the obesity epidemic with an aging demographic. Both aging and obesity are associated with marked defects in skeletal muscle metabolic health. Despite these findings, we have a poor understanding of how obesity and aging may interact to impact skeletal muscle mass and metabolic health. Therefore, we investigated the...
Impact of lifestyle factors on quantitative motor and cognitive performance: insights from a longitudinal study on healthy ageing
The process of ageing is extremely variable in progression and phenotypic features including significant variations in disease milestones, such as cognitive impairment, frailty, or recurrent falls. Our aim was to analyze the influence of lifestyle factors on motor and cognitive performance in a longitudinal ageing study in older people on healthy ageing. We conducted a longitudinal analysis in a cohort of 744 older participants (mean 70 years) over an 8-year period. Cognitive performance was...
Sequential transcriptional programs underpin activation of hippocampal stem cells
Adult neural stem cells exist on a continuum from deep to shallow quiescence that changes in response to injury or aging; however, the transcription factors controlling these stepwise transitions have not been identified. Single-cell transcriptomic analyses of mice with loss of function or increased levels of the essential activation factor Ascl1 reveal that Ascl1 promotes the activation of hippocampal neural stem cells by driving these cells out of deep quiescence, despite its low protein...
Biological age acceleration in Alzheimer's disease modulates relative cortical to medial temporal lobe neurodegeneration
Alzheimer's disease (AD) is highly associated with aging, typically presenting with amnestic, multi-domain cognitive impairment and greater medial temporal lobe (MTL) atrophy relative to cortex. However, approximately 15 % of AD cases present atypically, often at younger ages and with greater cortical involvement relative to MTL. This association between age and AD presentation is imperfect: some younger-onset cases are typical, amnestic presentations while some older-onset cases present less...
Trends and mechanisms of Alzheimer's disease and hearing impairment: A 20-year perspective
Alzheimer's disease (AD) and hearing loss (HL) are major age-related public health challenges with emerging evidence suggesting their interconnection. This study aimed to investigate global research trends, shared molecular mechanisms, and clinical implications of AD and HL. A total of 349 articles published between 2004 and 2024 were retrieved from the Web of Science Core Collection and analyzed using VOSviewer and CiteSpace. GeneCards and STRING databases were used to explore molecular targets...
Using RNA therapeutics to promote healthy aging
Aging is characterized by a gradual decline of cellular and physiological functions over time and an increased risk of different diseases. RNA therapeutics constitute an emerging approach to target the molecular mechanisms of aging and age-related diseases via rational design and have several advantages over traditional drug therapies, including high specificity, low toxicity and the potential for rapid development and production. Here, we discuss the latest developments in RNA therapeutics...
Aging and Longevity: Latest results from PubMed
Subscribe to Aging & Longevity feed