Skip to main content

Alzheimer & Parkinson

Microglial cannabinoid receptor type II stimulation improves cognitive impairment and neuroinflammation in Alzheimer's disease mice by controlling astrocyte activation

5 months 3 weeks ago
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the accumulation of amyloid β (Aβ) and phosphorylated tau. Neuroinflammation, mainly mediated by glial activation, plays an important role in AD progression. Although there is growing evidence for the anti-neuroinflammatory and neuroprotective effects of the cannabinoid system modulation, the detailed mechanism remains unclear. To address these issues, we analyzed the expression levels of cannabinoid receptor...
Akira Sobue

Brain-derived and in vitro-seeded alpha-synuclein fibrils exhibit distinct biophysical profiles

5 months 3 weeks ago
The alpha-synuclein (αSyn) seeding amplification assay (SAA) that allows the generation of disease-specific in vitro seeded fibrils (SAA fibrils) is used as a research tool to study the connection between the structure of αSyn fibrils, cellular seeding/spreading, and the clinicopathological manifestations of different synucleinopathies. However, structural differences between human brain-derived and SAA αSyn fibrils have been recently highlighted. Here, we characterize the biophysical properties of...
Selene Seoyun Lee

Disease-modifying therapies for Alzheimer's disease: Clinical trial progress and opportunity

5 months 3 weeks ago
The U.S. Food and Drug Administration (FDA) recently approved lecanemab and donanemab for the treatment of early symptomatic Alzheimer's disease (AD) after their phase III trials reached endpoints. These two anti-amyloid β monoclonal antibodies represent the latest promise of disease-modifying therapy (DMT) for AD, which undoubtedly reignites new hope for DMTs to combat the staggering financial and human costs of AD. However, in addition to these two successful antibodies, there have been...
Yujie Zhang

Enhancing mitochondrial one-carbon metabolism is neuroprotective in Alzheimer's disease models

5 months 3 weeks ago
Alzheimer's disease (AD) is the most common form of age-related dementia. In AD, the death of neurons in the central nervous system is associated with the accumulation of toxic amyloid β peptide (Aβ) and mitochondrial dysfunction. Mitochondria are signal transducers of metabolic and biochemical information, and their impairment can compromise cellular function. Mitochondria compartmentalise several pathways, including folate-dependent one-carbon (1C) metabolism and electron transport by...
Yizhou Yu

Single-cell transcriptomics unveils molecular signatures of neuronal vulnerability in a mouse model of prion disease that overlap with Alzheimer's disease

5 months 3 weeks ago
Understanding why certain neurons are more sensitive to dysfunction and death caused by misfolded proteins could provide therapeutically relevant insights into neurodegenerative disorders. Here, we harnessed single-cell transcriptomics to examine live neurons isolated from prion-infected female mice, aiming to identify and characterize prion-vulnerable neuronal subsets. Our analysis revealed distinct transcriptional responses across neuronal subsets, with a consistent pathway-level depletion of...
Jessy A Slota

Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer's disease

5 months 3 weeks ago
The pathogenesis of Alzheimer's disease (AD) depends on environmental and heritable factors, with its molecular etiology still unclear. Here we present a spatial transcriptomic (ST) and single-nucleus transcriptomic survey of late-onset sporadic AD and AD in Down syndrome (DSAD). Studying DSAD provides an opportunity to enhance our understanding of the AD transcriptome, potentially bridging the gap between genetic mouse models and sporadic AD. We identified transcriptomic changes that may...
Emily Miyoshi

Unknown roles of tau pathology in neurological disorders. Challenges and new perspectives

5 months 3 weeks ago
Aging presents progressive changes that increase the susceptibility of the central nervous system (CNS) to suffer neurological disorders (NDs). Several studies have reported that an aged brain suffering from NDs shows the presence of pathological forms of tau protein, a microtubule accessory protein (MAP) critical for neuronal function. In this context, accumulative evidence has shown a pivotal contribution of pathological forms of tau to Alzheimer's disease (AD) and tauopathies. However,...
Margrethe A Olesen

Functional anatomy of the subthalamic nucleus and the pathophysiology of cardinal features of Parkinson's disease unraveled by focused ultrasound ablation

5 months 3 weeks ago
The subthalamic nucleus (STN) modulates basal ganglia output and plays a fundamental role in the pathophysiology of Parkinson's disease (PD). Blockade/ablation of the STN improves motor signs in PD. We assessed the topography of focused ultrasound subthalamotomy (n = 39) by voxel-based lesion-symptom mapping to identify statistically validated brain voxels with the optimal effect against each cardinal feature and their respective cortical connectivity patterns by diffusion-weighted tractography....
Rafael Rodriguez-Rojas

CalDAG-GEFI acts as a guanine nucleotide exchange factor for LRRK2 to regulate LRRK2 function and neurodegeneration

5 months 3 weeks ago
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). LRRK2 protein contains two enzymatic domains: a GTPase (Roc-COR) and a kinase domain. Disease-causing mutations are found in both domains. Now, studies have focused largely on LRRK2 kinase activity, while attention to its GTPase function is limited. LRRK2 is a guanine nucleotide-binding protein, but the mechanism of direct regulation of its GTPase activity remains unclear and its physiological GEF is not known....
Qinfang Liu

Hemochromatosis neural archetype reveals iron disruption in motor circuits

5 months 3 weeks ago
Our understanding of brain iron regulation and its disruption in disease is limited. Excess iron affects motor circuitry, contributing to Parkinson's disease (PD) risk. The molecular mechanisms regulating central iron levels, beyond a few well-known genes controlling peripheral iron, remain unclear. We generated scores based on the archetypal brain iron accumulation observed in magnetic resonance imaging scans of individuals with excessive dietary iron absorption and hemochromatosis risk....
Robert Loughnan

HLA is a potent immunoinflammatory target in asymptomatic Alzheimer's disease

5 months 4 weeks ago
Alzheimer's disease (AD) is a common neurodegenerative disease, neuroinflammation is an early pathological feature of AD. However, the alteration of the immune microenvironment in asymptomatic AD was not fully explained. In this study, we aimed to utilize the transcriptome data of AD patients in public databases to reveal the change of immune microenvironment in asymptomatic AD and screen the potential drug targets. A series of bioinformatics analyses were done, including differentially...
Yingwei Zheng

Whole-genome sequencing to identify rare variants in East Asian patients with dementia with Lewy bodies

5 months 4 weeks ago
Dementia with Lewy bodies (DLB) is the second most common form of age-related dementia, following Alzheimer's disease (AD). DLB is associated with a worse prognosis than AD and is characterized by a more rapid progression of cognitive impairment and a poorer quality of life. In addition, the pathogenesis of DLB is less understood than that of AD, and only three genes-SNCA (α-synuclein), APOE (apolipoprotein E), and GBA1 (glucosylceramidase beta 1)-have been convincingly demonstrated to be...
Tetsuaki Kimura

Exome sequencing in Asian populations identifies low-frequency and rare coding variation influencing Parkinson's disease risk

5 months 4 weeks ago
Parkinson's disease (PD) is an incurable, progressive and common movement disorder that is increasing in incidence globally because of population aging. We hypothesized that the landscape of rare, protein-altering variants could provide further insights into disease pathogenesis. Here we performed whole-exome sequencing followed by gene-based tests on 4,298 PD cases and 5,512 controls of Asian ancestry. We showed that GBA1 and SMPD1 were significantly associated with PD risk, with replication in...
Elaine Gy Chew

Tau filaments are tethered within brain extracellular vesicles in Alzheimer's disease

5 months 4 weeks ago
The abnormal assembly of tau protein in neurons is a pathological hallmark of multiple neurodegenerative diseases, including Alzheimer's disease (AD). Assembled tau associates with extracellular vesicles (EVs) in the central nervous system of individuals with AD, which is linked to its clearance and prion-like propagation. However, the identities of the assembled tau species and EVs, as well as how they associate, are not known. Here, we combined quantitative mass spectrometry, cryo-electron...
Stephanie L Fowler

Diets to promote healthy brain ageing

5 months 4 weeks ago
Diet is a modifiable lifestyle factor with a proven role in cardiovascular disease risk reduction that might also play an important part in cognitive health. Evidence from observational studies has linked certain healthy dietary patterns to cognitive benefits. However, clinical trials of diet interventions have demonstrated either null or, at best, small effects on cognitive outcomes. In this Review, we summarize the currently available evidence from observational epidemiology and clinical...
Sokratis Charisis

Residual microglia following short-term PLX5622 treatment in 5xFAD mice exhibit diminished NLRP3 inflammasome and mTOR signaling, and enhanced autophagy

5 months 4 weeks ago
While moderately activated microglia in Alzheimer's disease (AD) are pivotal in clearing amyloid beta (Aβ), hyperactivated microglia perpetuate neuroinflammation. Prior investigations reported that the elimination of ~80% of microglia through inhibition of the colony-stimulating factor 1 receptor (CSF1R) during the advanced stage of neuroinflammation in 5xFamilial AD (5xFAD) mice mitigates synapse loss and neurodegeneration. Furthermore, prolonged CSF1R inhibition diminished the development of...
Maheedhar Kodali

Granulins rescue inflammation, lysosome dysfunction, lipofuscin, and neuropathology in a mouse model of progranulin deficiency

5 months 4 weeks ago
Progranulin (PGRN) deficiency is linked to neurodegenerative diseases, including frontotemporal dementia (FTD), Alzheimer's disease, and Parkinson's disease. Proper PGRN levels are critical for brain health; however, the function of PGRN is unclear. PGRN is composed of 7.5 repeat domains, called granulins, and processed into granulins inside the lysosome. PGRN is beneficial for neuronal health, but the role of individual granulins is controversial and unclear. We find that the expression of...
Jessica Root

Muscarinic receptors mediate motivation via preparatory neural activity in humans

5 months 4 weeks ago
Motivation depends on dopamine, but might be modulated by acetylcholine which influences dopamine release in the striatum, and amplifies motivation in animal studies. A corresponding effect in humans would be important clinically, since anticholinergic drugs are frequently used in Parkinson's disease, a condition that can also disrupt motivation. Reward and dopamine make us more ready to respond, as indexed by reaction times (RT), and move faster, sometimes termed vigour. These effects may be...
John P Grogan
Checked
4 hours 27 minutes ago
Alzheimer and Parkinson: Latest results from PubMed
Subscribe to Alzheimer & Parkinson feed