Alzheimer & Parkinson
Subthalamic nucleus dynamics during executive functioning: Insights from local field potentials in Parkinson's disease
This study explores the involvement of the subthalamic nucleus (STN) in executive functions, particularly cognitive flexibility, in Parkinson's disease (PD) patients. Utilizing a computerized Wisconsin Card Sorting Task (WCST) and local field potential (LFP) recordings from implanted deep brain stimulation (DBS) electrodes, we investigated task-specific neural dynamics. Behavioural results demonstrated increased error rates and prolonged response times in trials requiring set-shifting and rule...
New biomarkers for early-stage tau pathology in Alzheimer's disease
No abstract
Microglia underlie amyloid-beta clearance in immunized people with Alzheimer disease
No abstract
The bridge-like lipid transport protein VPS13C/PARK23 mediates ER-lysosome contacts following lysosome damage
Based on genetic studies, lysosome dysfunction is thought to play a pathogenetic role in Parkinson's disease. Here we show that VPS13C, a bridge-like lipid-transport protein and a Parkinson's disease gene, is a sensor of lysosome stress or damage. Following lysosome membrane perturbation, VPS13C rapidly relocates from the cytosol to the surface of lysosomes where it tethers their membranes to the ER. This recruitment depends on Rab7 and requires a signal at the damaged lysosome surface that...
Brain cells given an 'invisibility cloak' fix Parkinson's symptoms in rats
No abstract
Expression of anti-amyloid CARs in microglia promotes efficient and selective phagocytosis of Aβ1‒42
Genetic engineering of microglial cells is a promising therapeutic avenue emerging with advancements in gene delivery techniques. Using a recently developed AAV capsid for efficient in vitro transduction we report the engineering of microglia with CARs (CAR-Mic) targeting phagocytosis of amyloid beta 1‒42 (Aβ42). Functional screening of seven CAR constructs in human iPSC-derived microglia revealed up to 6-fold increases in internalized Aβ relative to viral control. CAR-driven phagocytic...
Multi-ancestry GWAS identifies 16 novel Alzheimer disease risk loci
No abstract
Commander complex regulates lysosomal function and is implicated in Parkinson's disease risk
Variants in GBA1 resulting in decreased lysosomal glucocerebrosidase (GCase) activity are a common risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Incomplete penetrance of GBA1 variants suggests that additional genes contribute to PD and DLB manifestation. By using a pooled genome-wide CRISPR interference screen, we identified copper metabolism MURR1 domain-containing 3 (COMMD3) protein, a component of the COMMD/coiled-coil domain-containing protein 22...
Neuroprotective effects of Centella asiatica against LPS/amyloid beta-induced neurodegeneration through inhibition of neuroinflammation
Protein aggregation and microglia-mediated neuroinflammation are the major contributors to the progression of neurodegeneration. Currently, available drugs for neurodegenerative diseases have limited efficacy and are associated with several side effects; suggesting a need to discover novel therapeutic agents. Therefore, we aim to evaluate the neuroprotective effects of C. asiatica against amyloid beta (Aβ) and lipopolysaccharides (LPS)-induced neurodegeneration using human microglia and neuronal...
Research round-up: sleep
No abstract
Unlocking the secrets of sleep
No abstract
The great brain clearance and dementia debate
No abstract
Reducing Alzheimer's disease risk with SGLT2 inhibitors: From glycemic control to neuroprotection
Recent research has established a strong link between metabolic abnormalities and an increased risk of dementia. In parallel, there is growing epidemiological evidence supporting the neuroprotective effects of antidiabetic medications against cognitive impairments. Among these, sodium-glucose co-transporter (SGLT2) inhibitors have emerged as pharmacological candidates with promising potential in alleviating the burden of age-related diseases, particularly neurodegenerative diseases (NDD). SGLT2...
GRAMD1B is a regulator of lipid homeostasis, autophagic flux and phosphorylated tau
Lipid dyshomeostasis and tau pathology are present in frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). However, the relationship between lipid dyshomeostasis and tau pathology remains unclear. We report that GRAM Domain Containing 1B (GRAMD1B), a nonvesicular cholesterol transporter, is increased in excitatory neurons of human neural organoids (HNOs) with the MAPT R406W mutation. Human FTLD, AD cases, and PS19 tau mice also have increased GRAMD1B expression. We show that...
Immune checkpoint TIM-3 regulates microglia and Alzheimer's disease
Microglia are the resident immune cells in the brain and have pivotal roles in neurodevelopment and neuroinflammation^(1,2). This study investigates the function of the immune-checkpoint molecule TIM-3 (encoded by HAVCR2) in microglia. TIM-3 was recently identified as a genetic risk factor for late-onset Alzheimer's disease³, and it can induce T cell exhaustion⁴. However, its specific function in brain microglia remains unclear. We demonstrate in mouse models that TGFβ signalling induces TIM-3...
Plasma phospho-tau217 for Alzheimer's disease diagnosis in primary and secondary care using a fully automated platform
Global implementation of blood tests for Alzheimer's disease (AD) would be facilitated by easily scalable, cost-effective and accurate tests. In the present study, we evaluated plasma phospho-tau217 (p-tau217) using predefined biomarker cutoffs. The study included 1,767 participants with cognitive symptoms from 4 independent secondary care cohorts in Malmö (Sweden, n = 337), Gothenburg (Sweden, n = 165), Barcelona (Spain, n = 487) and Brescia (Italy, n = 230), and a primary care cohort in Sweden...
Alpha-synuclein regulates nucleolar DNA double-strand break repair in melanoma
Although an increased risk of the skin cancer melanoma in people with Parkinson's disease (PD) has been shown in multiple studies, the mechanisms involved are poorly understood, but increased expression of the PD-associated protein alpha-synuclein (αSyn) in melanoma cells may be important. Our previous work suggests that αSyn can facilitate DNA double-strand break (DSB) repair, promoting genomic stability. We now show that αSyn is preferentially enriched within the nucleolus in melanoma, where...
Tip60 HAT activators as therapeutic modulators for Alzheimer's disease
Reduced histone acetylation in the brain causes transcriptional dysregulation and cognitive impairment that are key initial steps in Alzheimer's disease (AD) etiology. Unfortunately, current treatment strategies primarily focus on histone deacetylase inhibition (HDACi) that causes detrimental side effects due to non-specific acetylation. Here, we test Tip60 histone acetyltransferase (HAT) activation as a therapeutic strategy for selectively restoring cognition-associated histone acetylation...
SFRP1 upregulation causes hippocampal synaptic dysfunction and memory impairment
Impaired neuronal and synaptic function are hallmarks of early Alzheimer's disease (AD), preceding other neuropathological traits and cognitive decline. We previously showed that SFRP1, a glial-derived protein elevated in AD brains from preclinical stages, contributes to disease progression, implicating glial factors in early pathogenesis. Here, we generate and analyze transgenic mice overexpressing astrocytic SFRP1. SFRP1 accumulation causes early dendritic and synaptic defects in adult mice,...
Aerobic Exercise Restores Hippocampal Neurogenesis and Cognitive Function by Decreasing Microglia Inflammasome Formation Through Irisin/NLRP3 Pathway
Persistent microglial inflammation is a detrimental contributor to the progression of Parkinson disease (PD) pathology and related issues such as impaired adult hippocampal neurogenesis (AHN) and cognition. We conducted a 10-week exercise program with MPTP-treated mice to determine whether neuroinflammation can be addressed by aerobic exercise and elucidate its underlying regulatory mechanisms. Ten weeks of exercise significantly reduced PD-related pathology and enhanced AHN and memory. These...
Alzheimer and Parkinson: Latest results from PubMed
Subscribe to Alzheimer & Parkinson feed