Alzheimer & Parkinson
Ketogenic beta-hydroxybutyrate regulates beta-hydroxybutyrylation of TCA cycle-associated enzymes and attenuates disease-associated pathologies in Alzheimer's mice
Lysine β-hydroxybutyrylation (Kbhb) is a post-translational modification that has recently been found to regulate protein functions. However, whether and how protein Kbhb modification participates in Alzheimer's disease (AD) remains unknown. Herein, we carried out 4D label-free β-hydroxybutylation quantitative proteomics using brain samples of 8-month-old and 2-month-old APP/PS1 AD model mice and wild-type (WT) controls. We identified a series of tricarboxylic acid (TCA) cycle-associated enzymes...
Abeta -induced excessive mitochondrial fission drives type H blood vessels injury to aggravate bone loss in APP/PS1 mice with Alzheimer's diseases
Alzheimer's diseases (AD) patients suffer from more serious bone loss than cognitively normal subjects at the same age. Type H blood vessels were tightly associated with bone homeostasis. However, few studies have concentrated on bone vascular alteration and its role in AD-related bone loss. In this study, APP/PS1 mice (4- and 8-month-old) and age-matched wild-type mice were used to assess the bone vascular alteration and its role in AD-related bone loss. Transmission electron microscopy,...
Autophagy, aging, and age-related neurodegeneration
Autophagy is a conserved mechanism that degrades damaged or superfluous cellular contents and enables nutrient recycling under starvation conditions. Many neurodegeneration-associated proteins are autophagy substrates, and autophagy upregulation ameliorates disease in many animal models of neurodegeneration by enhancing the clearance of toxic proteins, proinflammatory molecules, and dysfunctional organelles. Autophagy inhibition also induces neuronal and glial senescence, a phenomenon that...
Characterizing tandem repeat complexities across long-read sequencing platforms with TREAT and <em>otter</em>
Tandem repeats (TRs) play important roles in genomic variation and disease risk in humans. Long-read sequencing allows for the accurate characterization of TRs; however, the underlying bioinformatics perspectives remain challenging. We present otter and TREAT: otter is a fast targeted local assembler, cross-compatible across different sequencing platforms. It is integrated in TREAT, an end-to-end workflow for TR characterization, visualization, and analysis across multiple genomes. In a...
Expanding drug targets for 112 chronic diseases using a machine learning-assisted genetic priority score
Identifying genetic drivers of chronic diseases is necessary for drug discovery. Here, we develop a machine learning-assisted genetic priority score, which we call ML-GPS, that incorporates genetic associations with predicted disease phenotypes to enhance target discovery. First, we construct gradient boosting models to predict 112 chronic disease phecodes in the UK Biobank and analyze associations of predicted and observed phenotypes with common, rare, and ultra-rare variants to model the...
A cross-disease resource of living human microglia identifies disease-enriched subsets and tool compounds recapitulating microglial states
Human microglia play a pivotal role in neurological diseases, but we still have an incomplete understanding of microglial heterogeneity, which limits the development of targeted therapies directly modulating their state or function. Here, we use single-cell RNA sequencing to profile 215,680 live human microglia from 74 donors across diverse neurological diseases and CNS regions. We observe a central divide between oxidative and heterocyclic metabolism and identify microglial subsets associated...
Early steps of protein disaggregation by Hsp70 chaperone and class B J-domain proteins are shaped by Hsp110
Hsp70 is a key cellular system counteracting protein misfolding and aggregation, associated with stress, ageing, and disease. Hsp70 solubilises aggregates and aids protein refolding through substrate binding and release cycles regulated by co-chaperones: J-domain proteins (JDPs) and nucleotide exchange factors (NEFs). Here, we elucidate the collaborative impact of Hsp110 NEFs and different JDP classes throughout Hsp70-dependent aggregate processing. We show that Hsp110 plays a major role at...
Clustering lysosomes around the MTOC: a promising strategy for SNCA/alpha-synuclein breakdown leading to parkinson disease treatment
Macroautophagy/autophagy maintains cellular homeostasis by degrading cytoplasmic components and its disruption is linked to Parkinson disease (PD), which is characterized by dopamine depletion and the accumulation of SNCA/α-synuclein aggregates in neurons. Therefore, activation of autophagy is considered a therapeutic strategy for PD; however, autophagy inducers have not yet been developed as therapeutic drugs because they are involved in a wide range of signaling pathways. Here, we focused on...
SEA-AD is a multimodal cellular atlas and resource for Alzheimer's disease
No abstract
Integrated multimodal cell atlas of Alzheimer's disease
Alzheimer's disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types in 84 donors with varying AD pathologies. This cohort includes 33 male donors and 51 female donors, with an average age at time of death of 88 years....
Waste clearance shapes aging brain health
Brain health is intimately connected to fluid flow dynamics that cleanse the brain of potentially harmful waste material. This system is regulated by vascular dynamics, the maintenance of perivascular spaces, neural activity during sleep, and lymphatic drainage in the meningeal layers. However, aging can impinge on each of these layers of regulation, leading to impaired brain cleansing and the emergence of various age-associated neurological disorders, including Alzheimer's and Parkinson's...
NAD(+)-boosting agent nicotinamide mononucleotide potently improves mitochondria stress response in Alzheimer's disease via ATF4-dependent mitochondrial UPR
Extensive studies indicate that mitochondria dysfunction is pivotal for Alzheimer's disease (AD) pathogenesis; while cumulative evidence suggests that increased mitochondrial stress response (MSR) may mitigate neurodegeneration in AD, explorations to develop a MSR-targeted therapeutic strategy against AD are scarce. We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which NAD^(+)-boosting agent nicotinamide mononucleotide (NMN)...
Modelling human neuronal catecholaminergic pigmentation in rodents recapitulates age-related neurodegenerative deficits
One key limitation in developing effective treatments for neurodegenerative diseases is the lack of models accurately mimicking the complex physiopathology of the human disease. Humans accumulate with age the pigment neuromelanin inside neurons that synthesize catecholamines. Neurons reaching the highest neuromelanin levels preferentially degenerate in Parkinson's, Alzheimer's and apparently healthy aging individuals. However, this brain pigment is not taken into consideration in current animal...
Francisco Lopera obituary: neurologist who traced genetic origin of early-onset Alzheimer's
No abstract
Macroscale connectome topographical structure reveals the biomechanisms of brain dysfunction in Alzheimer's disease
The intricate spatial configurations of brain networks offer essential insights into understanding the specific patterns of brain abnormalities and the underlying biological mechanisms associated with Alzheimer's disease (AD), normal aging, and other neurodegenerative disorders. This study investigated alterations in the topographical structure of the brain related to aging and neurodegenerative diseases by analyzing brain gradients derived from structural MRI data across multiple cohorts (n =...
Systematic evaluation of multifactorial causal associations for Alzheimer's disease and an interactive platform MRAD developed based on Mendelian randomization analysis
Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify...
Small molecule modulators of alpha-synuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease
Parkinson's disease (PD) is primarily characterized by loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain and accumulation of aggregated forms of alpha-synuclein (α-Syn), an intrinsically disordered protein, in the form of Lewy Bodies and Lewy Neurites. Substantial evidences point to the aggregated/fibrillar forms of α-Syn as a central event in PD pathogenesis, underscoring the modulation of α-Syn aggregation as a promising strategy for PD treatment....
Serotonin in depression and Alzheimer's disease: Focus on SSRI's beneficial effects
Depression is a complex and pervasive mental health disorder affecting millions globally. Serotonin, a critical neurotransmitter, plays a central role in the pathophysiology of depression. This review explores serotonin's multifaceted role in depression, focusing on its synthesis, bioavailability, receptor interactions, and the impact of various factors, including diet, stress, and gender differences. This review aims to provide a comprehensive understanding of serotonin's role in depression by...
Natural variation in age-related dopamine neuron degeneration is glutathione dependent and linked to life span
Aging is the biggest risk factor for Parkinson's disease (PD), suggesting that age-related changes in the brain promote dopamine neuron vulnerability. It is unclear, however, whether aging alone is sufficient to cause significant dopamine neuron loss, and if so, how this intersects with PD-related neurodegeneration. Here, through examining a large collection of naturally varying Drosophila strains, we find a strong relationship between life span and age-related dopamine neuron loss. Strains with...
High-throughput screening for small-molecule stabilizers of misfolded glucocerebrosidase in Gaucher disease and Parkinson's disease
Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease, PD); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small proluminescent HiBiT peptide reporter tag,...
Alzheimer and Parkinson: Latest results from PubMed
Subscribe to Alzheimer & Parkinson feed