Alzheimer & Parkinson
Proteomic insights into early-stage Alzheimer's disease: Identifying key neuronal proteins impacted by amyloid beta oligomers in an in vitro model
Alzheimer's disease (AD) remains a pressing global health concern, necessitating comprehensive investigations into its underlying molecular mechanisms. While the late-stage pathophysiology of this disease is well understood, it is crucial to examine the role of amyloid beta oligomers (Aβo), which form in the brain during the early stages of disease development. These toxic oligomers could affect neuronal viability and generate oxidative stress in the brain. In this study, we exposed SHSY-5Y...
Cathepsin B promotes Aβ proteotoxicity by modulating aging regulating mechanisms
While the activities of certain proteases promote proteostasis and prevent neurodegeneration-associated phenotypes, the protease cathepsin B (CTSB) enhances proteotoxicity in Alzheimer's disease (AD) model mice, and its levels are elevated in brains of AD patients. How CTSB exacerbates the toxicity of the AD-causing Amyloid β (Aβ) peptide is controversial. Using an activity-based probe, aging-altering interventions and the nematode C. elegans, we discovered that the CTSB CPR-6 promotes Aβ...
Fluid biomarkers of chronic traumatic brain injury
Traumatic brain injury (TBI) is a leading cause of long-term disability across the world. Evidence for the usefulness of imaging and fluid biomarkers to predict outcomes and screen for the need to monitor complications in the acute stage is steadily increasing. Still, many people experience symptoms such as fatigue and cognitive and motor dysfunction in the chronic phase of TBI, where objective assessments for brain injury are lacking. Consensus criteria for traumatic encephalopathy syndrome, a...
Bridging brain insulin resistance to Alzheimer's pathogenesis
Emerging evidence links type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), with brain insulin resistance (BIR) as a key factor. In a recent study, Lanzillotta et al. reveal that reduced biliverdin reductase-A (BVR-A) impairs glycogen synthase kinase 3β (GSK3β) phosphorylation, causing mitochondrial dysfunction and exacerbating brain insulin resistance in the progression of both T2DM and AD.
The role of PINK1-Parkin in mitochondrial quality control
Mitophagy mediated by the recessive Parkinson's disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially...
Can flashing lights stall Alzheimer's? What the science shows
No abstract
How long COVID could lift the fog on neurocognitive disorders
No abstract
LRRK2 regulates production of reactive oxygen species in cell and animal models of Parkinson's disease
Oxidative stress has long been implicated in Parkinson's disease (PD) pathogenesis, although the sources and regulation of reactive oxygen species (ROS) production are poorly defined. Pathogenic mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are associated with increased kinase activity and a greater risk of PD. The substrates and downstream consequences of elevated LRRK2 kinase activity are still being elucidated, but overexpression of mutant LRRK2 has been associated with...
Amyloid-β oligomers trigger sex-dependent inhibition of GIRK channel activity in hippocampal neurons in mice
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by amyloid plaques and cognitive decline, the latter of which is thought to be driven by soluble oligomeric amyloid-β (oAβ). The dysregulation of G protein-gated inwardly rectifying K^(+) (GIRK; also known as Kir3) channels has been implicated in rodent models of AD. Here, seeking mechanistic insights, we uncovered a sex-dependent facet of GIRK-dependent signaling in AD-related amyloid pathophysiology. Synthetic...
Alzheimer's disease-linked risk alleles elevate microglial cGAS-associated senescence and neurodegeneration in a tauopathy model
The strongest risk factors for late-onset sporadic Alzheimer's disease (AD) include the ε4 allele of apolipoprotein E (APOE), the R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), and female sex. Here, we combine APOE4 and TREM2^(R47H) (R47H) in female P301S tauopathy mice to identify the pathways activated when AD risk is the strongest, thereby highlighting detrimental disease mechanisms. We find that R47H induces neurodegeneration in 9- to 10-month-old female APOE4...
A tau dephosphorylation-targeting chimeraselectively recruits protein phosphatase-1 to ameliorate Alzheimer's disease and tauopathies
Abnormal accumulation of hyperphosphorylated tau (pTau) is a major cause of neurodegeneration in Alzheimer's disease (AD) and related tauopathies. Therefore, reducing pTau holds therapeutic promise for these diseases. Here, we developed a chimeric peptide, named D20, for selective facilitation of tau dephosphorylation by recruiting protein phosphatase 1 (PP1) to tau. PP1 is one of the active phosphatases that dephosphorylates tau. In both cultured primary hippocampal neurons and mouse models for...
The genetic landscape of basal ganglia and implications for common brain disorders
The basal ganglia are subcortical brain structures involved in motor control, cognition, and emotion regulation. We conducted univariate and multivariate genome-wide association analyses (GWAS) to explore the genetic architecture of basal ganglia volumes using brain scans obtained from 34,794 Europeans with replication in 4,808 white and generalization in 5,220 non-white Europeans. Our multivariate GWAS identified 72 genetic loci associated with basal ganglia volumes with a replication rate of...
Cryo-EM structure of Alzheimer's disease tau filaments with PET ligand MK-6240
Positron Emission Tomography (PET) ligands have advanced Alzheimer's disease (AD) diagnosis and treatment. Using autoradiography and cryo-EM, we identify AD brain tissue with elevated tau burden, purify filaments, and determine the structure of second-generation high avidity PET ligand MK-6240 at 2.31 Å resolution, which bound at a 1:1 ratio within the cleft of tau paired-helical filament (PHF), engaging with glutamine 351, lysine 353, and isoleucine 360. This information elucidates the basis of...
Insulin-inspired hippocampal neuron-targeting technology for protein drug delivery
Hippocampal neurons can be the first to be impaired with neurodegenerative disorders, including Alzheimer's disease (AD). Most drug candidates for causal therapy of AD cannot either enter the brain or accumulate around hippocampal neurons. Here, we genetically engineered insulin-fusion proteins, called hippocampal neuron-targeting (Ht) proteins, for targeting protein drugs to hippocampal neurons because insulin tends to accumulate in the neuronal cell layers of the hippocampus. In vitro...
Neuro-evolutionary evidence for a universal fractal primate brain shape
The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our results indicate that...
Emerging signs of Alzheimer-like tau hyperphosphorylation and neuroinflammation in the brain post recovery from COVID-19
Coronavirus disease 2019 (COVID-19) has been suggested to increase the risk of memory decline and Alzheimer's disease (AD), the main cause of dementia in the elderly. However, direct evidence about whether COVID-19 induces AD-like neuropathological changes in the brain, especially post recovery from acute infection, is still lacking. Here, using postmortem human brain samples, we found abnormal accumulation of hyperphosphorylated tau protein in the hippocampus and medial entorhinal cortex within...
Epg5 links proteotoxic stress due to defective autophagic clearance and epileptogenesis in <em>Drosophila</em> and Vici syndrome patients
Epilepsy is a common neurological condition that arises from dysfunctional neuronal circuit control due to either acquired or innate disorders. Autophagy is an essential neuronal housekeeping mechanism, which causes severe proteotoxic stress when impaired. Autophagy impairment has been associated to epileptogenesis through a variety of molecular mechanisms. Vici Syndrome (VS) is the paradigmatic congenital autophagy disorder in humans due to recessive variants in the ectopic P-granules autophagy...
RAB12-LRRK2 complex suppresses primary ciliogenesis and regulates centrosome homeostasis in astrocytes
The leucine-rich repeat kinase 2 (LRRK2) phosphorylates a subset of RAB GTPases, and their phosphorylation levels are elevated by Parkinson's disease (PD)-linked mutations of LRRK2. However, the precise function of the LRRK2-regulated RAB GTPase in the brain remains to be elucidated. Here, we identify RAB12 as a robust LRRK2 substrate in the mouse brain through phosphoproteomics profiling and solve the structure of RAB12-LRRK2 protein complex through Cryo-EM analysis. Mechanistically, RAB12...
Reassessing kinetin's effect on PINK1 and mitophagy
Substantial evidence indicates that a decline in mitochondrial health contributes to the development of Parkinson disease. Accordingly, therapeutic stimulation of mitophagy, the autophagic turnover of dysfunctional mitochondria, is a promising approach to treat Parkinson disease. An attractive target in such a setting is PINK1, a protein kinase that initiates the mitophagy cascade. Previous reports suggest that PINK1 kinase activity can be enhanced by kinetin triphosphate (KTP), an enlarged ATP...
Advances in understanding biomarkers and treating neurological diseases - Role of the cerebellar dysfunction and emerging therapies
Cerebellar dysfunction is increasingly recognized as a critical factor in various neurological diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Research has revealed distinct cerebellar atrophy patterns in conditions such as AD and multiple system atrophy, and studies in mice have highlighted its impact on motor control and cognitive functions. Emerging research into autism spectrum disorder (ASD) has identified key targets, such as...
Alzheimer and Parkinson: Latest results from PubMed
Subscribe to Alzheimer & Parkinson feed