Alzheimer & Parkinson
MicroRNAs in Parkinson's disease: From pathogenesis to diagnostics and therapeutic strategies
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by pathological changes, including the loss of dopaminergic neurons and abnormal aggregation of α-synuclein (α-syn). Certain cellular and molecular events are involved; however, the origin and significance of these events remain uncertain. The discovery of microRNAs (miRNAs) predicted to play a pivotal role in various regulatory processes has emerged. Studies on the dysregulation of miRNAs in PD pathogenesis,...
Astrocyte-to-neuron H(2)O(2) signalling supports long-term memory formation in Drosophila and is impaired in an Alzheimer's disease model
Astrocytes help protect neurons from potential damage caused by reactive oxygen species (ROS). While ROS can also exert beneficial effects, it remains unknown how neuronal ROS signalling is activated during memory formation, and whether astrocytes play a role in this process. Here we discover an astrocyte-to-neuron H(2)O(2) signalling cascade in Drosophila that is essential for long-term memory formation. Stimulation of astrocytes by acetylcholine induces an increase in intracellular calcium...
Lipid-induced condensate formation from the Alzheimer's Abeta peptide triggers amyloid aggregation
The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain...
Propagation of pathologic alpha-synuclein from kidney to brain may contribute to Parkinson's disease
The pathogenesis of Lewy body diseases (LBDs), including Parkinson's disease (PD), involves α-synuclein (α-Syn) aggregation that originates in peripheral organs and spreads to the brain. PD incidence is increased in individuals with chronic renal failure, but the underlying mechanisms remain unknown. Here we observed α-Syn deposits in the kidneys of patients with LBDs and in the kidney and central nervous system of individuals with end-stage renal disease without documented LBDs. In male mice,...
alpha-Synuclein deposition in the kidney may contribute to Parkinson's disease
No abstract
Basal ganglia components have distinct computational roles in decision-making dynamics under conflict and uncertainty
The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit...
Amyloid-associated hyperconnectivity drives tau spread across connected brain regions in Alzheimer's disease
In Alzheimer's disease (AD), amyloid-β (Aβ) triggers the aggregation and spreading of tau pathology, which drives neurodegeneration and cognitive decline. However, the pathophysiological link between Aβ and tau remains unclear, which hinders therapeutic efforts to attenuate Aβ-related tau accumulation. Aβ has been found to trigger neuronal hyperactivity and hyperconnectivity, and preclinical research has shown that tau spreads across connected neurons in an activity-dependent manner. Here, we...
Functional classification of tauopathy strains reveals the role of protofilament core residues
Distinct tau amyloid assemblies underlie diverse tauopathies but defy rapid classification. Cell and animal experiments indicate tau functions as a prion, as different strains propagated in cells cause unique, transmissible neuropathology after inoculation. Strain amplification requires compatibility of the monomer and amyloid template. We used cryo-electron microscopy to study one cell-based yellow fluorescent protein (YFP)-tagged strain, resolving its amyloid nature. We then used sequential...
Biotin mitigates the development of manganese-induced, Parkinson's disease-related neurotoxicity in Drosophila and human neurons
Chronic exposure to manganese (Mn) induces manganism and has been widely implicated as a contributing environmental factor to Parkinson's disease (PD), featuring notable overlaps between the two in motor symptoms and clinical hallmarks. Here, we developed an adult Drosophila model of Mn toxicity that recapitulated key parkinsonian features, spanning behavioral deficits, neuronal loss, and dysfunctions in lysosomes and mitochondria. Metabolomics analysis of the brain and body tissues of these...
Parental origin of transgene modulates amyloid-beta plaque burden in the 5xFAD mouse model of Alzheimer's disease
In Alzheimer's disease (AD) research, the 5xFAD mouse model is commonly used as a heterozygote crossed with other genetic models to study AD pathology. We investigated whether the parental origin of the 5xFAD transgene affects plaque deposition. Using quantitative light-sheet microscopy, we found that paternal inheritance of the transgene led to a 2-fold higher plaque burden compared with maternal inheritance, a finding consistent across multiple 5xFAD colonies. This effect was not due to...
The possible role of cerebrolysin in the management of vascular dementia: Leveraging concepts
Cerebrolysin (CBL) is a combination of neurotrophic peptides and amino acids derived from pig brains. CBL can cross the blood-brain barrier (BBB) and its biological effect is similar to the effect of endogenous neurotrophic effects. The mechanism of action of CBL is related to the induction of neurogenesis, neuroplasticity, neuroprotection, and neurotrophicity. Therefore, CBL may be effective against the development and progression of neurodegenerative diseases such as Alzheimer disease (AD) and...
Mapping the cellular etiology of schizophrenia and complex brain phenotypes
Psychiatric disorders are multifactorial and effective treatments are lacking. Probable contributing factors to the challenges in therapeutic development include the complexity of the human brain and the high polygenicity of psychiatric disorders. Combining well-powered genome-wide and brain-wide genetics and transcriptomics analyses can deepen our understanding of the etiology of psychiatric disorders. Here, we leverage two landmark resources to infer the cell types involved in the etiology of...
Mapping the effectiveness and risks of GLP-1 receptor agonists
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) are increasingly being used to treat diabetes and obesity. However, their effectiveness and risks have not yet been systematically evaluated in a comprehensive set of possible health outcomes. Here, we used the US Department of Veterans Affairs databases to build a cohort of people with diabetes who initiated GLP-1RA (n = 215,970) and compared them to those who initiated sulfonylureas (n = 159,465), dipeptidyl peptidase 4 (DPP4) inhibitors (n...
KIF9 Ameliorates Neuropathology and Cognitive Dysfunction by Promoting Macroautophagy in a Mouse Model of Alzheimer's Disease
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the elderly. The imbalance of protein production and degradation processes leads to the accumulation of misfolded and abnormally aggregated amyloid-beta (Aβ) in the extracellular space and forms senile plaques, which constitute one of the most critical pathological hallmarks of AD. KIF9, a member of the kinesin protein superfamily, mediates the anterograde transport of intracellular cargo along microtubules. However,...
Quercetin-functionalized nanomaterials: Innovative therapeutic avenues for Alzheimer's disease management
Alzheimer's Disease (AD) is a major global health challenge, largely due to its complex pathology and the limited effectiveness of existing treatments. Quercetin, a bioactive compound belonging to the flavonoid class, its promising antioxidant, anti-inflammatory, and neuroprotective effects in addressing AD. However, its therapeutic potential is hindered by challenges such as low bioavailability, instability, and restricted permeability across the blood-brain barrier (BBB). Advances in...
Lipidic folding pathway of α-Synuclein via a toxic oligomer
Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized. We report an atomic-resolution structural characterization of a toxic...
The Human Microglia Atlas (HuMicA) unravels changes in disease-associated microglia subsets across neurodegenerative conditions
Dysregulated microglia activation, leading to neuroinflammation, is crucial in neurodegenerative disease development and progression. We constructed an atlas of human brain immune cells by integrating nineteen single-nucleus RNA-seq and single-cell RNA-seq datasets from multiple neurodegenerative conditions, comprising 241 samples from patients with Alzheimer's disease, autism spectrum disorder, epilepsy, multiple sclerosis, Lewy body diseases, COVID-19, and healthy controls. The integrated...
Neuraminidase 1 regulates neuropathogenesis by governing the cellular state of microglia via modulation of Trem2 sialylation
Neuraminidase 1 (NEU1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, NEU1 regulates immune cells, primarily those of the monocytic lineage. Here, we examine how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production. When Neu1 is deficient/downregulated, Trem2-FL remains sialylated, accumulates...
The ER protein CANX (calnexin)-mediated autophagy protects against alzheimer disease
Although the relationship between macroautophagy/autophagy and Alzheimer disease (AD) is widely studied, the underlying mechanisms are poorly understood, especially the regulatory role of the initiation signaling of autophagy on AD. Here, we find that the ER transmembrane protein CANX (calnexin) is a novel interaction partner of the autophagy-inducing kinase ULK1 and is required for ULK1 recruitment to the ER under basal or starved conditions. Loss of CANX results in the inactivity of ULK1...
The immunology of stroke and dementia
Ischemic stroke and vascular cognitive impairment, caused by a sudden arterial occlusion or more subtle but protracted vascular insufficiency, respectively, are leading causes of morbidity and mortality worldwide with limited therapeutic options. Innate and adaptive immunity have long been implicated in neurovascular injury, but recent advances in methodology and new experimental approaches have shed new light on their contributions. A previously unappreciated dynamic interplay of...
Alzheimer and Parkinson: Latest results from PubMed
Subscribe to Alzheimer & Parkinson feed